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Abstract: Selecting LED retrofits for examination rooms in healthcare buildings involves
setting the right balance between lighting quality and energy efficiency. In the case of LEDs
incorporated in luminaires used in medical examination rooms, it is essential to consider
not only the correlated color temperature (CCT) and color rendering index (CRI Ra) in
compliance with the lighting standards, but also the cyanosis observation index (COI)
that meets the more demanding regulations of certain countries. In this work, the Color
Preference Criteria (CPC) method is used to select LED retrofits for this application. The
LEDs classified as P1 according to the CPC method were found to meet the required
COI level.

Keywords: energy efficiency; LED; color quality; lighting; examination room; healthcare;
hospital; luminaires

1. Introduction
Examination rooms are frequently situated within the same premises as the physi-

cian’s office, where patients may also receive treatment [1]. Electric lighting should create
an optimal working environment [2,3] for physicians, physician assistants, and nurses,
fostering a welcoming atmosphere for patients [4,5] while providing sufficient brightness
and color rendering [6] to facilitate accurate examination and diagnosis [7,8]. Light com-
bines two essential aspects in the examination and treatment rooms. It should positively
influence the patient’s perception of the environment, inducing a sense of calm, safety, and
relaxation during the procedure [9–11]. The quality of lighting [12] in examination rooms
has a significant impact on the clinical assessment of patients [13]. In addition to a warm
and friendly atmosphere, physicians should see the finest color nuances on the patient’s
skin [14]. For this reason, adequate brightness and high-quality lighting are needed to
perform these tasks effectively [15]. In European Union countries, the EN 12464-1 [16]
standard specifies that an examination room’s illuminance must be maintained at a level
of 1000 l×. In the USA [17], Australia, and New Zealand, the same level of illuminance is
also required [18]. Electric lighting must also meet additional requirements (Table 1) [16] in
terms of Correlated Color Temperature (CCT) [19–21] and General Color Rendering Index
(CRI Ra) [16,22]. In Australia and New Zealand, the allowed CCT range is broader than that
in Europe, the United Kingdom, and the United States [18]. Additionally, Australia/New
Zealand standards and regulations require sufficient detection of skin discoloration, which
can indicate low oxygen levels in the blood. It specifically refers to a bluish tint appearing
on the skin or mucous membranes, usually caused by inadequate blood circulation or
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insufficient oxygen levels in the blood [18]. This requirement is quantified by an index
called the Cyanosis Observation Index (COI). For any given light source, the numerical
value of COI is calculated in relation to a 4000 K Planckian Radiator reference light source.
It is defined as the magnitude of the change between the test light source and the refer-
ence light source in the color appearance of both fully oxygenated blood (100% oxygen
saturation) and oxygen-reduced blood (50% oxygen saturation blue-purple blood). The
COI calculations are described step-by-step in Appendix G of the AS/NZS 1680.2.5 doc-
ument [18]. The calculations are based on spectral reflectance data for oxygenated and
cyanated blood multiplied by spectral distribution data for the considered light sources
(Figure 1). The lower the COI value, the smaller the change in color appearance under the
evaluated light source. According to the guidelines in AS/NZS 1680.2.5:2018, any lighting
to identify cyanosis should have a COI not exceeding 3.3. A lower COI value indicates
that the light source is more suitable for the visual detection of specific color deviations
associated with cyanosis.

Table 1. Standard requirements for light sources used in medical examination rooms.

Country and Region Australia and
New Zealand

European Union
and United Kingdom United States

CCT requirements 3300 K ≤ CCT ≤ 5300 K

Nominal CCT
4000 K ≤ CCT ≤ 5000 K

Acceptance range
3710 K ≤ CCT ≤ 5312 K

Nominal CCT
4000 K ≤ CCT ≤ 5000 K

Acceptance range
3710 K ≤ CCT ≤ 5312 K

general and ward areas
General Color Rendering

Index (CRI Ra)
≥80 ≥80

No
General

Recommendation

examination
and treatment areas

General Color Rendering
Index (CRI Ra)

≥85 ≥90

≥80
(for exam areas)

>90
(for surgery)

Special requirements Cyanosis observation:
COI ≤ 3.3

CCT requirements for
general lighting in the

examination rooms
3710 K ≤ CCT ≤ 5312 K

CCT requirements for
lighting in the

surgery and examination
rooms

3710 K ≤ CCT ≤ 5312 K

In addition to the parameters required by lighting standards [23], other parameters
can be used to describe the color rendering qualities of lighting products [24–30]. For
instance, the color rendering of human skin is assessed using the parameter Rf,skin [26].
To evaluate how accurately a light source can reproduce saturated red colors (for objects
whose reflectance spectra contain red wavelengths), the CRI R9 parameter is used [31].
It is also possible to evaluate lighting quality based on user expectations by using the
Color Preference Criteria method (CPC) defined in the ANSI/IES-TM-30 standard [26].
This method assesses the color quality of light on the basis of several parameters: general
color fidelity index (Rf) [32–34] (currently is the most accurate measure of light color
fidelity [26,35,36]), color gamut area index (Rg) (a metric that quantifies the average change
in chroma across a color gamut), and local red chroma (saturation) shift (Rcs,h1) specified by
hue angle bin. This classification system (see Table 2) defines four priority levels of color
preference: P1, P2, and P3, and out-of-class, the latter corresponding to insufficient color
rendering properties.
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Figure 1. The spectral properties of fully oxygenated blood (100% oxygen saturation is represented by
the green line) and oxygen-reduced blood (50% oxygen saturation blue-purple blood is represented by
the violet line), and the spectral power distribution (SPD) of the 4000 K Planckian Radiator reference
light is represented by the black line.

Table 2. The boundaries of categorization parameters according to the color preference criteria
ANSI/IES TM 30-20 method priority levels (class) [26].

Class P1 “Best” Class P2 “Good” Class P3 “Acceptable”

Rf ≥ 78 Rf ≥ 74 Rf ≥ 70
Rg ≥ 95 Rg ≥ 92 Rg ≥ 89

−1% ≤ Rcs,h1 ≤ 15% −7% ≤ Rcs,h1 ≤ 19% −12% ≤ Rcs,h1 ≤ 23%

Until now, fluorescent lamps (FLs) have been widely used for interior lighting, partic-
ularly in public building spaces. The spectral power distribution (SPD) of commercially
available FLs exhibits narrow peaks resulting from mercury (Hg) emission lines and
phosphor-based emissions (refer to Figure 2a).

The chromaticities of these FLs (Figure 2b) meet the ANSI chromaticity tolerance
requirements for nominal CCT [39,40] given by MacAdam standardized ellipses (the range
in which all colors around a reference point in a chromaticity diagram are indistinguishable
by the average human eye MacAdam called as “1-step ellipse”). Any point on the boundary
of a “1-step” ellipse drawn around a target represents one standard deviation from the
target. Due to this, these ellipses are also known as the “Standard Deviation of Color
Matching” (SDCM). By more restricted categorization, the document [39] establishes a
“4-step” SDCM ellipses categorization (the boundary represents four standard deviations
from the target chromaticities) and a “5-step” SDCM ellipses categorization (the boundary
represents five standard deviations from the target chromaticities) with less restricted
categorization requirements [40]. Their chromaticities are presented in Figure 2 by the
magenta and yellowish (lime yellow) stars for lamps applicable in Australia/New Zealand
and by magenta stars for lamps used in Europe, the United Kingdom, and the United States
in medical examination rooms.
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Figure 2. (a) spectral power distributions (SPDs) of typical fluorescent lamps [26,37,38] and
(b) chromaticity coordinates of these lamps. The ellipses (4 steps and 5 steps) for the three nominal
CCT values are indicated by blue dashed lines. The magenta and yellowish (lime yellow) stars are for
lamps applicable in Australia/New Zealand, where CCT is in the range 3300 K ≤ CCT ≤ 5300 K, and
the magenta stars are for lamps with nominal CCT in the range 4000 K ≤ CCT ≤ 5000 K.

In Figure 3, the parameters (Rf, Rg, Rcs,h1) of the FLs that are compliant with the
ANSI chromaticity requirements are presented. These lamps satisfy the criteria for being
categorized into one of the CPC classes.
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Figure 3. The values of Rf, Rg, and Rcs,h1v parameters of FL sources.

The graphs in Figure 3 show that the Rf and Rg indices always correspond to the
requirements of the highest CPC class (P1). In contrast, the Rcs,h1 parameter can be associ-
ated with any of the three CPC classes. This parameter, therefore, plays a pivotal role in
determining the CPC classification (Table 3) of FL lamps.
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Table 3. TM-30-2020 color rendering indices of fluorescent lamps according to their CPC class.

Parameter Class P1 Class P2 Class P3

Rf - 95~96 89~94 77~86

Rg - 102 99~101 99~102

Rcs,h1 [%] −0.28~−0.25 −5.73~−4.25 −10.10~−7.25

Table 4 provides the luminous efficiency of radiation (LER), together with the values
of CCT, CRI Ra, CRI R9, Rf,skin, and COI, according to the CPC class (P1, P2, and P3). Con-
sidering the requirements concerning the COI parameter, all fluorescent lamps belonging
to P1 class are suitable for use in medical examination rooms. However, their LER values
are the lowest in comparison to other CPC classes. Table 4 also shows that not all FLs
belonging to P2 or P3 classes meet the COI requirement.

Table 4. Other parameters of fluorescent lamps according to their CPC class.

Parameter Class P1 Class P2 Class P3

Correlated Color Temperature (CCT) [K] 4995~4997 4149~5250 3381~5072

General Color Rendering Index (CRI Ra) - 96 88~93 80~88

Luminous efficiency of radiation (LER) [lm/W] 254 261~273 316~349

R9 - 98 58~70 15~46

Rf,skin - 97 90~93 88~96

COI - 2.70 2.47~4.42 1.17~5.33

In the European Union (EU), a regulation is being enacted to eliminate environmentally
hazardous materials, including mercury [1]. The EU has prohibited the largest category of
mercury-containing light sources for both new and renovated lighting installations as of
September 2023 [12]. This ban aligns with the EU’s Restriction of Hazardous Substances
(RoHS) Directive [9], which aims to accelerate the global shift to sustainable and energy-
efficient LED lighting [41], in harmony with the United Nations Minamata Convention on
Mercury [13]. This shift has also led to the integration of LEDs into healthcare facilities.
Consequently, there is currently a massive transition from traditional light sources, such
as fluorescent lamps, to solid-state lighting (LED-based lighting products). The transi-
tion to LEDs is additionally driven by legislation on product energy efficiency [42–46],
emphasizing the importance of adopting high-efficiency lighting solutions across vari-
ous applications. Depending on the application of LEDs, parameters other than energy
efficiency need to be examined [47].

The following sections examine commercially available LEDs and investigate the
relationship between their color quality and their energy efficiency when they are used
in healthcare examination rooms. The latest recommended method (CPC classification)
to describe the color quality of LED lights, which was also introduced by ANSI as the
TM30-20 standard, is used in this investigation. This method is new but internationally
recognized and applied in research by many lighting professionals [34,48–53]. In addition,
the results given by the CPC methods are compared with the LED classification given by
classically used in those types of application CRI Ra, R9, and Rf,skin parameters.
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2. Materials and Results
Some publicly available databases of LED spectral power distributions (SPDs) are used

to provide a representative dataset of commercially available LED products. The following
databases were used: the “Real Light Source SPDs and Color Data for Use in Research”
database [38] provided by the Pacific Northwest National Laboratory (PNNL), USA, and the
“EMPIR 15SIB07 PhotoLED” database” [54] collected by the partners and collaborators of
the European metrology project EURAMET EMPIR 15SIB07 PhotoLED consisting of more
than 3000 SPDs of commercially available LEDs. These databases include LEDs of different
technologies: phosphor-converted LEDs (pc-LEDs) and color-mixing LEDs (cm-LEDs).
In general lighting applications, the pc-LEDs are the most widely used technology [55].
The pc-LEDs with nominal CCT of 3500 K (91 pcs), 4000 K (256 pcs), 4500 K (33 pcs), and
5000 K (36 pcs), and CRI Ra values consistent with the requirement of medical examination
rooms (Table 1) were selected, representing a total number of 416 different LEDs. The
SPDs and chromaticity coordinates (represented by colored dots) are shown in Figure 4.
The magenta and yellowish dots are for LEDs that are compliant with the Australia/New
Zealand requirements, where CCT is in the range of 3300 K~5300 K. Magenta dots are used
to represent LEDs with nominal CCT in the range of 4000 K~5000 K. The (Rf, Rg, and Rcs,h1)
parameters of these LEDs are shown in Figure 5. The number of LEDs belonging to each
CPC class is presented in Figure 6.
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Figure 4. (a) SPDs of commercially available LED light sources and (b) chromaticity coordinates of
these LEDs. The area with nominal CCT values according to 7-step quadrangles is delimited by black
dashed lines. The magenta and yellowish dots correspond to LEDs applicable in Australia/New
Zealand, for which CCT is in the range of 3300 K~5300 K. Magenta dots correspond to LEDs in a
nominal CCT range of 4000 K~5000 K.
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Figure 5. (a) Rf, (b) Rg, and (c) Rcs,h1 values of the LEDs under consideration. The magenta and
yellowish dots are for LEDs, which are applicable in Australia/New Zealand, where CCT is in the
range of 3300 K~5300 K. The magenta dots are used for the LEDs with a nominal CCT in the range of
4000 K~5000 K, which are applicable in the European Union, United Kingdom, and United States.
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Figure 6. The number of selected LEDs according to their nominal CCT value and CPC class, where
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The CRI Ra values of the tested LEDs are plotted as a function of the CPC class
in Figure 7. Figure 8 shows the CCT values. Figures 7–11 represent the values of a
specific parameter for all the tested LEDs according to the corresponding CPC class.
In Figures 7 and 8, the magenta and yellowish dots represent LEDs applicable in Aus-
tralia/New Zealand (3300 K ≤ CCT ≤ 5300 K). Magenta dots are only for LEDs satisfying
4000 K ≤ CCT ≤ 5000 K), such as those required for healthcare lighting in Europe, the
United Kingdom, and the United States. The COI values of the LEDs under consideration
are presented in Figure 9. Figure 10 shows the LER values. The values of CRI R9 for these
pc-LEDs are presented in Figure 11, while Figure 12 shows the Rf,skin.
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Figure 8. The CCT values of the LEDs under consideration, according to their CPC classification. The
magenta and yellowish dots represent the LEDs, which are applicable in Australia/New Zealand,
where CCT is in the range of 3300 K~5300 K. The magenta dots are for LEDs with a nominal CCT
in the range of 4000 K~5000 K, which are applicable in the European Union, United Kingdom, and
United States.
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Figure 9. The COI values of the LEDs under consideration, according to their CPC classification. The
magenta and yellowish dots represent the LEDs, which are applicable in Australia/New Zealand,
where CCT is in the range of 3300 K~5300 K. The magenta dots are for the LEDs with a nominal CCT
in the range of 4000 K~5000 K, which are applicable in the European Union, United Kingdom, and
United States. The brown zone corresponds to compliance with the requirement of a COI of less
than 3.3.
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Figure 10. The LER values of the LEDs under consideration, according to their CPC classification.
The magenta and yellowish dots represent the LEDs, which are applicable in Australia/New Zealand,
where CCT is in the range of 3300 K~5300 K. The magenta dots are for the LEDs with a nominal CCT
in the range of 4000 K~5000 K, which are applicable in the European Union, United Kingdom, and
United States.
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The magenta and yellowish dots represent the LEDs, which are applicable in Australia/New Zealand,
where CCT is in the range of 3300 K~5300 K. The magenta dots are for the LEDs with a nominal CCT
in the range of 4000 K~5000 K, which are applicable in the European Union, United Kingdom, and
United States.
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Figure 12. The Rf,skin values of the LEDs under consideration, according to their CPC classification.
The magenta and yellowish dots represent the LEDs, which are applicable in Australia/New Zealand,
where CCT is in the range of 3300 K~5300 K. The magenta dots are for the LEDs with a nominal CCT
in the range of 4000 K~5000 K, which are applicable in the European Union, United Kingdom, and
United States.

3. Discussion
Figure 8 shows that, regardless of their nominal CCT, the vast majority (88% for

Australia/New Zealand evaluated LEDs and 89% for European Union, United Kingdom,
and United States evaluated LEDs) of the tested commercially available LED sources can
be classified as P1 (best color rendering quality), P2 (good color rendering quality), or P3
(acceptable color rendering quality) class in the CPC classification. As expected, Figure 8
also shows that CCT is not correlated with the color rendering quality assessed using the
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CPC method. Figure 7 shows that the CRI Ra values can reach values exceeding 95 for some
LEDs in class P1 and other LEDs in class P2. Therefore, this parameter is not sufficient to
express the differences between the P1 and P2 classes. The LEDs classified as P3 class have
CRI Ra in the range (80~90), and their Rf,skin parameter is mostly within a similar range of
values, but their CRI R9 parameter has unacceptable values for proper rendering of the red
color (Figure 11). All LEDs classified as out-of-class due to CPC classification have their
CRI Ra in the range (80~85) and Rf,skin in the range (85~90), but their COI parameter is
out of the acceptable range, exceeding the maximum allowed value by a factor of about 2
(Figure 9).

According to Figure 10, LEDs classified as P3 have higher LER (light efficiency of
radiation) values than LEDs of the P2 and P1 classes, thereby offering the possibility of
reaching the best energy efficiency for luminaires incorporating this type of LEDs.

As illustrated in Figure 11, the CRI R9 values (measuring red color rendering) correlate
well with the CPC class. The best CRI R9 values (equal to or greater than 90) are obtained
with LEDs of the P1 class. Lower CRI R9 values, but still positive, are found for LEDs of
class P2 or P3.

Figure 9 shows that all LEDs belonging to the P1 class and some LEDs in the P2 class
comply with the Australia/New Zealand COI requirements for medical examination room
lighting (COI value not exceeding 3.3).

The COI parameter is related to the LER value. It has been demonstrated that LEDs
with low LER values (230~290) are capable of fulfilling the standard requirements for the
COI value (not exceeding the value of 3.3). Furthermore, these LEDs are classified as P1
(Figure 9). The LEDs classified as P2 meet the COI requirements only when their LER is less
than 300 lm/W. The LEDs classified as P3, according to CPC classification, have a higher
LER (mostly with the value in the range 310~330 lm/W) compared with the LER of P1
and P2 LEDs. Only a few of these meet the COI requirements. The most energy-efficient
LEDs with an LER beyond 330 lm/W do not meet the COI requirements. Furthermore,
their Rf,skin parameter is less than 90, and the CRI R9 parameter is too low to ensure good
rendering of red colors (Figure 11).

In Figure 12, the data show that Rf,skin parameter is not a good predictor of the COI
parameter. It is interesting to note that many LEDs with a high Rf,skin value (good color
rendering of the skin) are unable to comply with the COI requirement of less than 3.3. The
values of Rf,skin parameter range from 85 to 100 for classes P1 and P2, 80 to 95 for class
P3, and 85 to 90 for the out-of-class LED products (Figure 12). In each of these classes,
the Rf,skin values are high, but the COI required is met only for class P1 and partially for
class P2 (Figure 9). It is worth mentioning that in the same range of Rf,skin parameters,
LEDs can have (Figure 12) non-compliant COI values (Figure 9). Therefore, Rf,skin cannot
be considered a reliable predictor of medical examination room lighting quality.

4. Conclusions
This article demonstrates that the CPC method can provide very precise discrimination

in the color rendering properties of a large number of available LEDs for lighting appli-
cations. This method is especially useful for choosing the best LEDs to equip luminaires
designed for medical examinations in healthcare facilities. These results show that the
specific requirements used in Australia and New Zealand to help the observation and
diagnosis of cyanosis can be met with LEDs classified in the P1 class of the CPC (best
preferred color rendering qualities). This class also provides the best color rendering of
saturated red colors, as measured by the CRI R9 index. However, the CPC class is not a
good predictor of the color rendering of the skin, as measured by the Rf,skin index. The Rf,skin

values are between 85 and 100 for LEDs of the P1 and P2 classes and between 80 and 95 for
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class P3 LEDs. However, LEDs with an Rf,skin index between 85 and 90 can be classified as
out-of-class with respect to the CPC requirements. As a consequence, the CPC classification
is not applicable to choosing LEDs with respect to their color rendering of the skin.

This work confirms that the standard color rendering index CRI Ra is not adapted
to guarantee good observation of cyanosis during medical examination. The use of light
sources with a CRI Ra in the range that classifies them as suitable for general lighting
applications (between 80 and 100) does not always ensure that the COI parameter is in the
required range of values. The issue is that different light sources with the same CRI Ra may
or may not meet the COI requirement. The CRI Ra is not a predictor of the COI index.

This paper presents a tool that allows users to evaluate the quality of light sources in
medical examination rooms. This article emphasizes the validity of using the CPC method-
ology to evaluate the qualitative parameters of LED sources. The article also points out that
this type of classification is essential to ensure complete and reliable knowledge of lighting,
and that looking only at the energy efficiency of LEDs that meet CRI Ra requirements is not
enough to have high-quality lighting in medical examination room applications.
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