

Projet LoB+HiE Low Béton / High Earth - Rapport d'essais n° AC22-08407 sur un complexe de plancher

Catherine Guigou Carter

▶ To cite this version:

Catherine Guigou Carter. Projet LoB+HiE Low Béton / High Earth - Rapport d'essais n° AC22-08407 sur un complexe de plancher. CSTB - Centre scientifique et technique du bâtiment. 2023. hal-04853081

HAL Id: hal-04853081 https://cstb.hal.science/hal-04853081v1

Submitted on 21 Dec 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Rapport d'essais n° AC22-08407 Concernant un complexe de plancher en bois

L'accréditation de la section Laboratoires du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole. Ce rapport d'essais atteste uniquement des caractéristiques de l'objet soumis aux essais et ne préjuge pas des caractéristiques de produits similaires. Il ne constitue pas une certification de produits au sens du code de la consommation. Seul le rapport électronique signé avec un certificat numérique valide fait foi en cas de litige. Ce rapport électronique est conservé au CSTB pendant une durée minimale de 10 ans. La reproduction de ce rapport électronique n'est autorisée que sous sa forme intégrale. Il comporte 35 pages.

À LA DEMANDE DE : VILLE DE CHÂTENAY-MALABRY

26, Rue du Docteur Le Savoureux 92290 CHÂTENAY-MALABRY

1	OBJET	3
2	TEXTES DE RÉFÉRENCE	3
3	RÉCAPITULATIF DES ESSAIS RÉALISÉS	3
4	PRODUITS SOUMIS AUX ESSAIS	5
4.1		
4.2	Plancher en bois lesté	10
4.3	Plancher en bois lesté avec chape sèche	15
4.4	Plancher en bois lesté, chape sèche et plancher chauffant sous parquet	20
AN	NEXE 1 : MÉTHODE D'ÉVALUATION ET EXPRESSION DES RÉSULTATS	25
AN	NEXE 2 : APPAREILLAGE	27
AN	NEXE 3 : PLAN DU POSTE DELTA	28
AN	NEXE 4 : MESURES VIBRATOIRES	29

1 OBJET

Déterminer l'indice d'affaiblissement acoustique R_w , le niveau de bruit de choc normalisé $L_{n,w}$ d'un complexe de plancher en bois, ainsi que ses propriétés vibratoires (fréquence fondamentale f_0 et facteur amortissement ξ).

2 TEXTES DE RÉFÉRENCE

Les mesures acoustiques sont réalisées :

- pour l'indice d'affaiblissement acoustique R et l'indice d'efficacité au bruit aérien ∆R selon les normes NF EN ISO 10140-1 (2021), NF EN ISO 10140-2 (2021), NF EN ISO 10140-4 (2021), NF EN ISO 10140-5 (2021), NF EN ISO 12999-1 (2020), NF EN ISO 717/1 (2020).
- pour le niveau de bruit de choc normalisé Ln selon les normes NF EN ISO 10140-1 (2021), NF EN ISO 10140-3 (2021), NF EN ISO 10140-4 (2021), NF EN ISO 10140-5 (2021) et NF EN ISO 12999-1 (2014) complétées par la norme NF EN ISO 717/2 (2020) et amendements associés.

Les mesures vibratoires sont réalisées selon la norme NF EN 16929. Ces mesures ne sont pas sous accréditation COFRAC.

3 RÉCAPITULATIF DES ESSAIS RÉALISÉS

N° essai	Produits soumis aux essais	7	Гуре d'essai	Résultats (dB)
1		cofric	R _w (C ; C _{tr})	24 (-1 ; -3)
2	Dispersion of the circ	colnic	L _{n,w}	96
3	Plancher support en bois	/	f_0	Voir annexe 4
4			ξ	
5		ofnik ()	R _w (C; C _{tr})	53 (-2 ; -8)
6	Dlaughan an hair leatá		L _{n,w}	62
7	Plancher en bois lesté	,	f ₀	Voir
8		/	ξ	annexe 4

N° essai	Produits soumis aux essais Type d'essai			Résultats (dB)
9		cofric	R _w (C; C _{tr})	≥ 62 (-3 ; -10)
10		eefnik	L _{n,w}	54
11	Plancher en bois lesté avec chape sèche	,	f ₀	Voir
12		/	ξ	annexe 4
13	Plancher en bois lesté avec chape sèche et plancher chauffant sous parquet	cofric	L _{n,w}	54

Date de réception : le 05 septembre 2022

Origine: Demandeur

Mise en œuvre : Demandeur

Fait à Marne-la-Vallée, le 12 Janvier 2023

Le chargé d'essais

La cheffe de division

Louis CASALA

Marie MAGNIN

4 PRODUITS SOUMIS AUX ESSAIS

4.1 Plancher support en bois

4.1.1 DESCRIPTION

Numéros d'essais : 1 à 4

CARACTERISTIQUES PRINCIPALES

Dimensions en mm : 4200 x 3600 Epaisseur en mm : 32 (hors ossature) Masse surfacique en kg/m² : 16,2 (hors ossature)

DESCRIPTION

Désignation	Nature / Composition	Référence	Fabricant	Dimensions (mm)	Masse surfacique	Divers
			PLANCHER	BOIS		
Ossature support	Solive en épicéa	/	/	Section : 100 x 220	/	/
Plancher	Panneaux bois	LVL X	STORA ENSO	Épaisseur : 32	16,2 kg/m²	Dimensions de panneaux : 4200 x 585

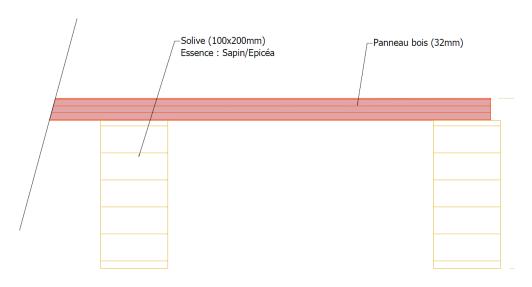
Conformément aux CGP, les informations relatives à la description des produits et les données identifiées par (*) sont fournies par le demandeur et sous son entière responsabilité.

4.1.2 MISE EN ŒUVRE

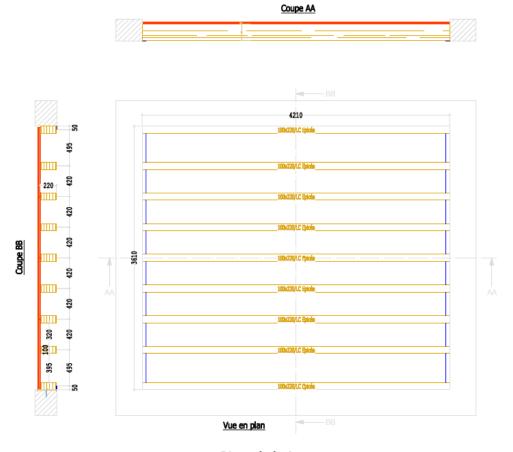
(Les dimensions sont données en mm)

Une bande de Compriband est collée sur les cornières présentes en périphérie de l'ouverture du cadre d'essais.

Les solives sont positionnées, reposant sur les cormières, dans la longueur tous les 420 et en périphérie de l'ouverture du cadre.


Les panneaux de bois sont vissés à la structure bois au pas de 300.

L'étanchéité périphérique de la maquette d'essais est réalisée au mastic.



4.1.3 PLANS

Détail de la configuration de plancher bois

Plan général

4.1.4 PHOTOS

Solives mises en place dans la cadre d'essai

Sous face du plancher (salle de reception)

Mise en œuvre des panneaux de bois

Surface du plancher (salle d'émission)

4.1.5. RÉSULTATS D'ESSAIS

Plancher support en bois Indice d'affaiblissement acoustique R

Numéro d'essai : 1

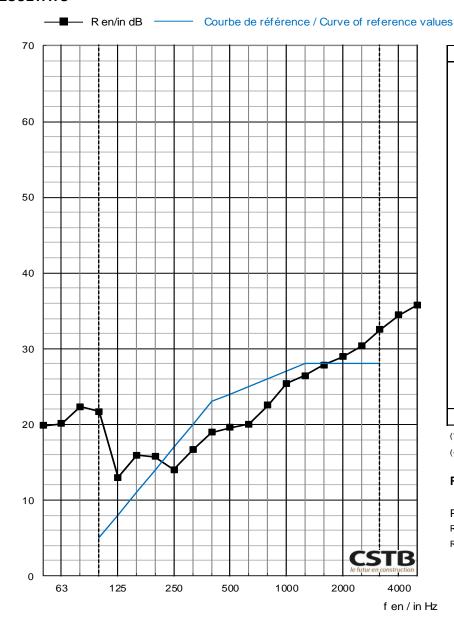
Date de l'essai : 12/09/2022

CARACTERISTIQUES PRINCIPALES

Dimensions en mm (L x I): 4200 x 3600

Épaisseur en mm : 32

Masse surfacique en kg/m²: 16,2


CONDITIONS DE MESURES

Salle émission Salle réception

Température : 23 °C Température : 23,5 °C Humidité relative : 56 % Humidité relative : 56 %

Pression atmosphérique: 101 kPa

RÉSULTATS

f	R
50	19,8
63	20,1
80	22,3
100	21,7
125	13,0
160	15,9
200	15,7
250	14,0
315	16,6
400	18,9
500	19,6
630	20,0
800	22,5
1000	25,4
1250	26,4
1600	27,8
2000	28,9
2500	30,3
3150	32,5
4000	34,4
5000	35,8
Hz	dB

(*) : valeur corrigée / corrected value

(+) : limite de poste / flanking limit

 $R_w (C;C_{tr}) = 24 (-1;-3) dB$

Pour information / For information :

 $R_A = R_w + C = 23 dB$

 $R_{A,tr} = R_w + C_{tr} = 21dB$

Plancher support en bois

Niveau de bruit de choc normalisé L_n

Numéro d'essai : 2

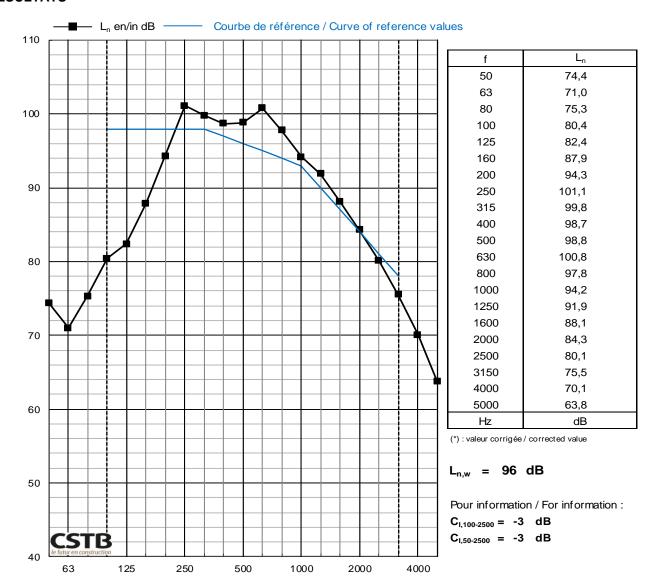
Date de l'essai : 12/09/2022

CARACTERISTIQUES PRINCIPALES

Dimensions en mm (L x I): 4200 x 3600

Épaisseur en mm : 32

Masse surfacique en kg/m²: 16,2


CONDITIONS DE MESURES

Salle réception

Température : 23,5 °C Humidité relative : 56 %

Pression atmosphérique : 101 kPa

RÉSULTATS

f en / in Hz

4.2 Plancher en bois lesté

4.2.1 DESCRIPTION

Numéros d'essais : 5 à 8

CARACTERISTIQUES PRINCIPALES

Dimensions en mm: 4200 x 3600

Epaisseurs en mm: 32 (plancher) + 105 (lestage) = 137

Masses surfaciques en kg/m²: 16,2 (plancher) + 130,3 (lestage) = 146,5 (hors ossature)

DESCRIPTION

DEGOKII NON									
Désignation	Nature / Composition	lature / Composition Référence Fabricant Dimensions (mm)		Masse	Divers				
PLANCHER BOIS									
	Voir description des essais n° 1 et 2 (p. 4)								
			LESTAGE						
Ossature	Lambourdes en sapin / épicéa	/	/	Section : 40 x 60	/	/			
intermédiaire	Plots antivibratiles en élastomère	REGUPOL VIBRATION 800	SOLUTIONS ELASTOMERES	Section : 35 x 35 Epaisseur : 20	/	Disposés en maillage de 600 x 600			
Remplissage	Sable recyclé	/	/	Hauteur de remplissage : 83	1570 kg/m³	I			
Parement	Panneaux OSB avec rainures et languettes sur polyane	Sterling OSB3 Zéro	NORBORD	Épaisseur : 22	14,4 kg/m²	Dimensions de panneaux : 2500 x 675			

Conformément aux CGP, les informations relatives à la description des produits et les données identifiées par (*) sont fournies par le demandeur et sous son entière responsabilité.

4.2.2 MISE EN ŒUVRE

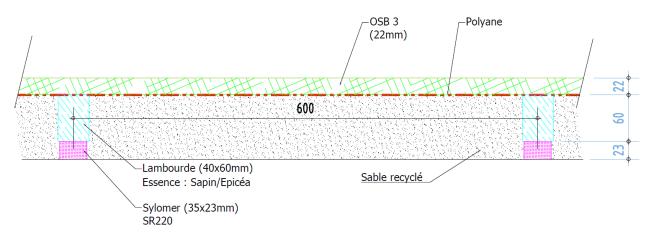
(Les dimensions sont données en mm)

Plancher support en bois :

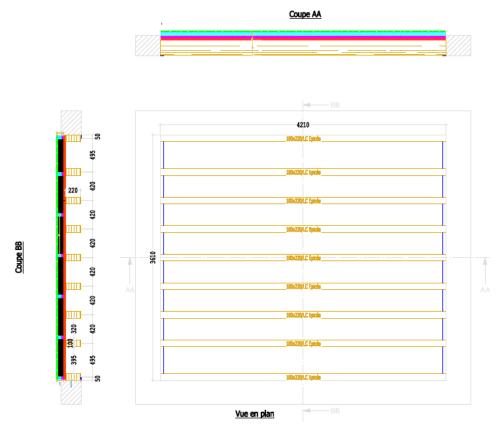
Voir mise en œuvre des essais n° 1 et 2 (p. 4).

Lestage:

Les lambourdes sont posées sur des plots antivibratiles tous les 600 dans la largeur et en périphérie de l'ouverture du cadre.

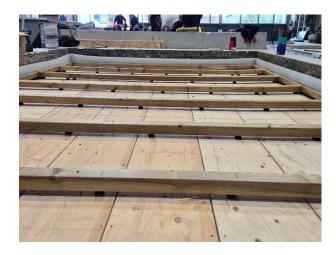

Une bande de rive est positionnée sur la périphérie de l'ouverture puis du sable est versé entre lambourdes jusqu'à hauteur.

Le tout est recouvert par un polyane d'étanchéité avant de visser les panneaux OSB aux lambourdes en trois points chacune.



4.2.3 PLANS

Détail de la configuration ajoutée sur le plancher support en bois



Plan général

4.2.4 PHOTOS

Lambourdes sur plots antivibratiles posées sur le plancher support en bois

Lestage de sable entre lambourdes

Recouvrement de panneaux OSB (surface du plancher)

4.2.5 RÉSULTATS D'ESSAIS

Plancher en bois lesté

Indice d'affaiblissement acoustique R

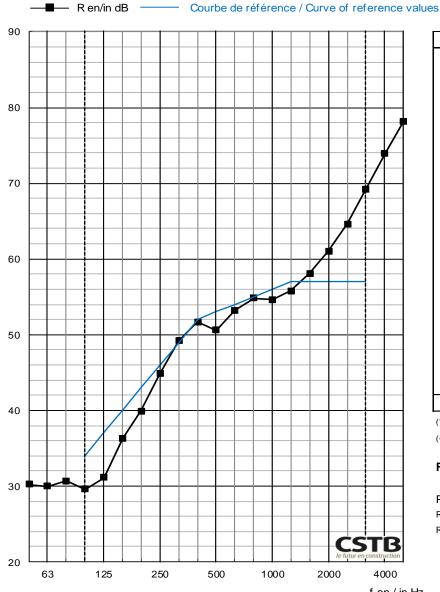
Numéro d'essai : 5

Date de l'essai : 23/09/2022

CARACTERISTIQUES PRINCIPALES

Dimensions en mm (L x I): 4200 x 3600

Épaisseur en mm : 137


Masse surfacique en kg/m²: 146,5 (hors ossature)

CONDITIONS DE MESURES

Salle émissionSalle réceptionTempérature : 22 °CTempérature : 21 °CHumidité relative : 51 %Humidité relative : 44 %

Pression atmosphérique: 101,3 kPa

RÉSULTATS

f	R
50	30,2
63	30,0
80	30,7
100	29,6
125	31,1
160	36,3
200	39,9
250	44,8
315	49,2
400	51,7
500	50,6
630	53,2
800	54,8
1000	54,6
1250	55,8
1600	58,1
2000	61,0
2500	64,6
3150	69,2
4000	73,9
5000	78,2
Hz	dB

(*) : valeur corrigée / corrected value

(+) : limite de poste / flanking limit

 $R_w (C;C_{tr}) = 53 (-2;-8) dB$

Pour information / For information :

 $R_A = R_w + C = 51dB$

 $R_{A,tr} = R_w + C_{tr} = 45 \, dB$

Plancher en bois lesté

Niveau de bruit de choc normalisé L_n

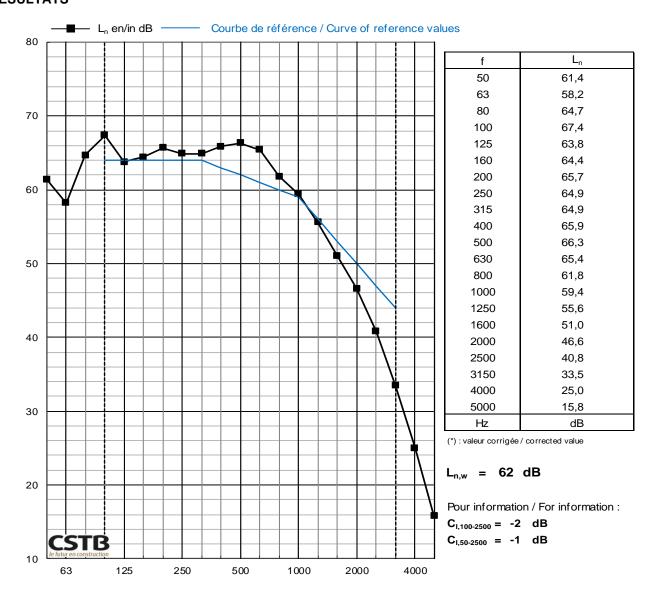
Numéro d'essai : 6

Date de l'essai : 23/09/2022

CARACTERISTIQUES PRINCIPALES

Dimensions en mm (L x I): 4200 x 3600 Épaisseur en mm: 137 (hors ossature)

Masse surfacique en kg/m²: 146,5 (hors ossature)


CONDITIONS DE MESURES

Salle réception

Température : 21,5 °C Humidité relative : 43 %

Pression atmosphérique: 101,3 kPa

RÉSULTATS

f en / in Hz

4.3 Plancher en bois lesté avec chape sèche

4.3.1 DESCRIPTION

Numéros d'essais : 9 à 12

CARACTERISTIQUES PRINCIPALES

Dimensions en mm: 4200 x 3600

Epaisseurs en mm: 32 (plancher) + 105 (lestage) + 45 (chape sèche) = 182

Masses surfaciques en kg/m²: 16,2 (plancher) + 130,3 (lestage) + 36,4 (chape sèche) = 182,9 (hors ossature)

DESCRIPTION

Désignation	Nature / Composition	Référence	Fabricant	Dimensions (mm)	Masse surfacique	Divers			
	PLANCHER BOIS								
	Voir description des essais n° 1 et 2 (p. 4)								
			LESTAGE						
		Voir des	cription des essais	n° 5 et 6 (p. 9)					
			CHAPE SECH	IE					
Plaques de sol	Double panneaux de fibres-gypse avec isolant en laine de verre bois en sous- face	Fermacell EE25 MW20	FERMACELL	Epaisseur totale : 45 Ep. parement 2x 12,5 Ep. isolant : 20	36,4	Dimensions plaques : 1500 x 500			
Etanchéité	Colle à joint	Fermacell		/	/	Cartouche de 310 mL			

Conformément aux CGP, les informations relatives à la description des produits et les données identifiées par (*) sont fournies par le demandeur et sous son entière responsabilité.

4.3.2 MISE EN ŒUVRE

(Les dimensions sont données en mm)

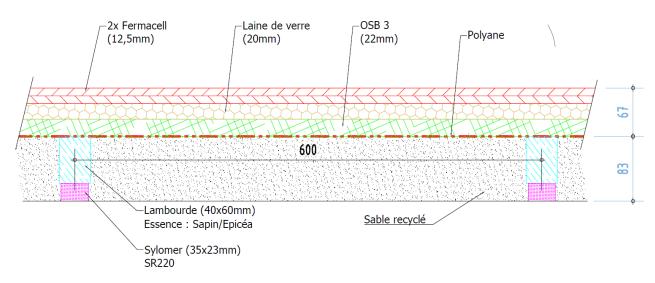
Plancher support en bois :

Voir mise en œuvre des essais n° 1 et 2 (p. 4).

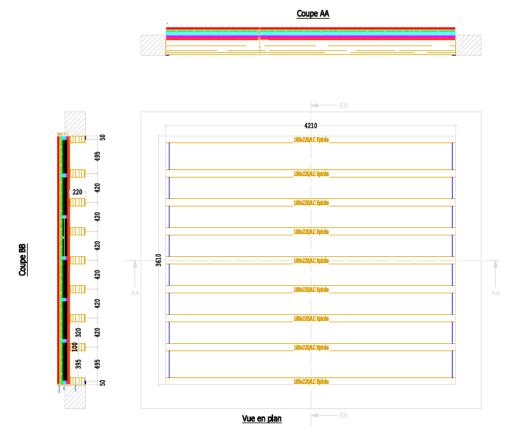
Lestage:

Voir mise en œuvre des essais n° 5 et 6 (p. 9).

Chape sèche:


Les plaques de sol sont posées à joints décalés perpendiculairement aux panneaux d'OSB et vissées à ceux-ci en périphérie tous les 300.

L'étanchéité des chants de plaques est réalisée à l'aide d'une colle à joint.



4.3.3 PLANS

Détail de la configuration ajoutée sur le plancher support en bois

Plan général

4.3.4 PHOTOS

Mise en œuvre de la chape sèche sur le parement OSB

4.3.5 RÉSULTATS D'ESSAIS

Plancher en bois lesté et chape sèche Indice d'affaiblissement acoustique R

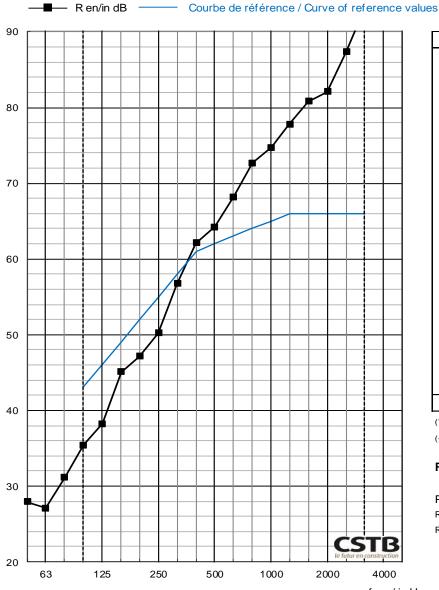
Numéro d'essai: 9

Date de l'essai : 29/09/2022

CARACTERISTIQUES PRINCIPALES

Dimensions en mm (L x I): 4200 x 3600

Épaisseur en mm : 182


Masse surfacique en kg/m²: 182,9 (hors ossature)

CONDITIONS DE MESURES

Salle émissionSalle réceptionTempérature : 19,5 °CTempérature : 19 °CHumidité relative : 56 %Humidité relative : 54 %

Pression atmosphérique: 99,8 kPa

RÉSULTATS

f	R
50	27,9
63	27,1
80	31,1
100	35,4
125	38,2
160	45,1
200	47,1
250	50,2
315	56,7
400	62,1
500	64,2
630	68,2
800	72,7
1000	74,7
1250	77,8
1600	80,8
2000	82,1
2500	87,3
3150	93,2 +(102,9)
4000	101,6 +(102,1)
5000	102,9 * +(102)
Hz	dB
/*\	/

(*) : valeur corrigée / corrected value

(+): limite de poste / flanking limit

 $R_w(C;C_{tr}) \ge 62(-3;-10) dB$

Pour information / For information :

 $R_A = R_w + C \ge 59 \text{ dB}$

 $R_{A,tr} = R_w + C_{tr} \ge 52 \, dB$

f en / in Hz

Plancher en bois lesté et chape sèche Niveau de bruit de choc normalisé L_n

Numéro d'essai : 10

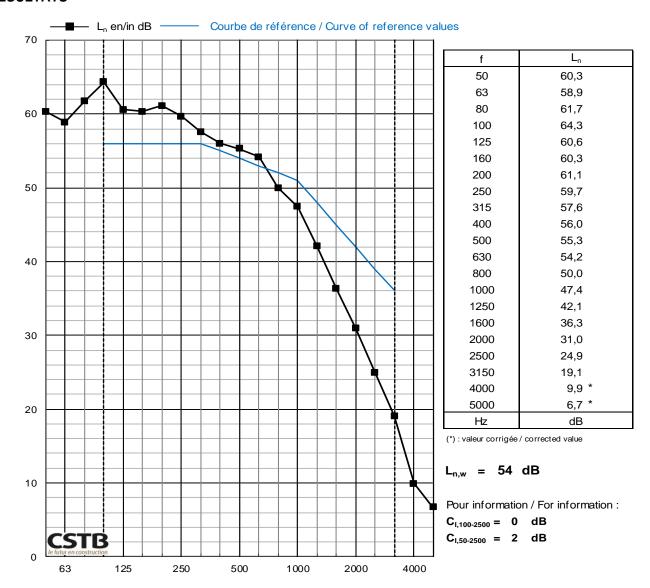
Date de l'essai : 29/09/2022

CARACTERISTIQUES PRINCIPALES

Dimensions en mm (L x I): 4200 x 3600

Épaisseur en mm : 182

Masse surfacique en kg/m²: 182,9 (hors ossature)


CONDITIONS DE MESURES

Salle réception

Température : 19,5 °C Humidité relative : 53 %

Pression atmosphérique: 99,8 kPa

RÉSULTATS

f en / in Hz

4.4 Plancher en bois lesté, chape sèche et plancher chauffant sous parquet

4.4.1 DESCRIPTION

Numéro d'essai : 13

CARACTERISTIQUES PRINCIPALES

Dimensions en mm: 4200 x 3600

Epaisseurs en mm: 32 (plancher) + 105 (lestage) + 45 (chape sèche) + 47 (plancher chauffant)

+ 21 (parquet) = 250

Masses surfaciques en kg/m²: 16,2 (plancher) + 130,3 (lestage) +36,4 (chape sèche) + 23 (plancher chauffant)

+ 10,2 (parquet) = 216,1 (hors ossature)

DESCRIPTION

Désignation	Nature / Composition	Référence	Fabricant	Dimensions (mm)	Masse surfacique	Divers			
PLANCHER BOIS									
	Voir description des essais n° 1 et 2 (p. 4)								
		LE	STAGE						
	Vo	oir description de	es essais n°	5 et 6 (p. 9)					
		CHAI	PE SECHE						
	Voi	r description des	s essais n° 9	et 10 (p. 14)					
		PLANCHE	R CHAUFF	ANT					
	Film de désolidarisation en polyéthylène	/		/	/	En rouleau			
	Dalles planes en PSE avec rainures	DALSEC		Epaisseur : 29	0,7 kg/m²	Dimensions dalles : 1000 x 750			
Système de plancher chauffant	Diffuseurs préformés en acier galvanisé	/	REHAU	Epaisseur : 0,4	1	Dimensions : 997 x 120			
planonor ondurant	Tubes chauffants en PER	RAUTHERM RAU-PER		Ø 16 x 1,5	1	1			
	Panneaux en plâtre et fibres de cellulose	DALSOL		Epaisseur : 18	22	Dimensions plaques : 1200 x 600			

Conformément aux CGP, les informations relatives à la description des produits et les données identifiées par (*) sont fournies par le demandeur et sous son entière responsabilité.

DESCRIPTION (suite)

Désignation	Nature / Composition	Référence	Fabricant	Dimensions (mm)	Masse surfacique	Divers
			PARQUET			
	Colle polyuréthane	NAVYCOL PS ECO	DESIGN PARQUET	/	/	Consommation : - 18 kg support / sous-couche - 21 kg sous-couche / parquet
Système de parquet	Sous-couche acoustique en pneu recyclés	DINACHOC S801	DINACHOC	Epaisseur : 3	2,1 kg/m²	Rouleau de 15 m²
	Parquet en chêne massif	SURCHANT CHÊNE	DESIGN PARQUET	Epaisseur : 14	10,2 kg/m²	Dimensions lamelles : 250 x 10

Conformément aux CGP, les informations relatives à la description des produits et les données identifiées par (*) sont fournies par le demandeur et sous son entière responsabilité.

4.4.2 MISE EN ŒUVRE

(Les dimensions sont données en mm)

Plancher support en bois:

Voir mise en œuvre des essais n° 1 et 2 (p. 4).

Lestage:

Voir mise en œuvre des essais n° 5 et 6 (p. 9).

Chape sèche:

Voir mise en œuvre des essais n° 9 et 10 (p. 14).

Système de plancher chauffant :

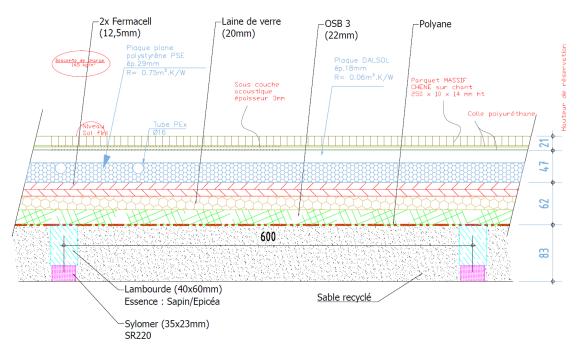
Un film de désolidarisation est déroulé sur le parement de la chape, puis une bande de rive est collée sur la périphérie de l'ouverture du cadre d'essais.

Les dalles rainurées en PSE sont disposées sur l'ensemble de la surface en respectant le bon cheminement des rainures.

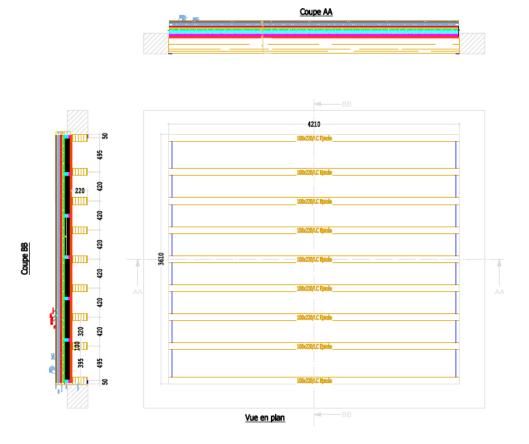
Les diffuseurs métalliques sont ensuite insérés dans ces dernières et les tubes sont alors fixés, par une simple pression, dans les rainures aux pas de 125 puis agraphés à chaque extrémité de dalles.

Le tout est ensuite recouvert par les panneaux en fibres de cellulose.

Parquet:


La sous-couche est encollée sur ses deux faces à l'aide d'un couteau à colle TKB B16 BLANCHON.

Les lames de parquet sont ensuite mises en œuvre de la même manière sur la sous-couche.



4.4.3 PLANS

Détail de la configuration ajoutée sur le plancher support en bois

Plan général

4.4.4 PHOTOS

Mise en œuvre du système de plancher chauffant

Mise en œuvre du système de parquet (surface du plancher)

4.4.5 RÉSULTATS D'ESSAIS

Plancher en bois lesté, chape sèche et plancher chauffant sous parquet

Niveau de bruit de choc normalisé L_n

Numéro d'essai : 13

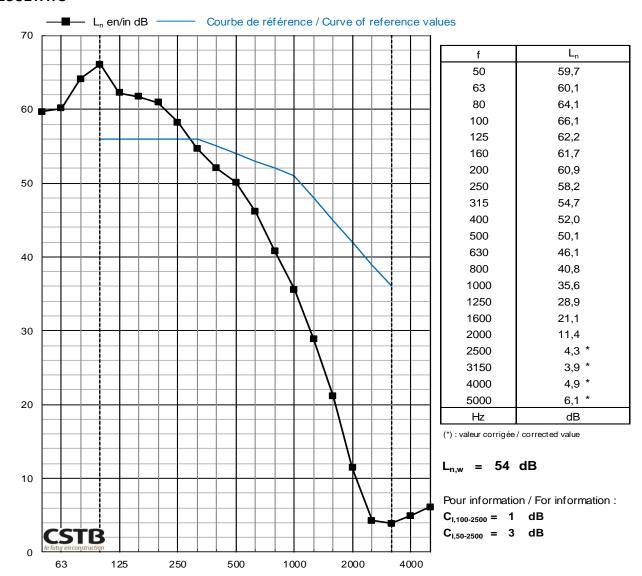
Date de l'essai : 13/10/2022

CARACTERISTIQUES PRINCIPALES

Dimensions en mm (L x I): 4200 x 3600

Épaisseur en mm : 250

Masse surfacique en kg/m²: 216,1


CONDITIONS DE MESURES

Salle réception

Température : 19 °C Humidité relative : 59 %

Pression atmosphérique: 101,5 kPa

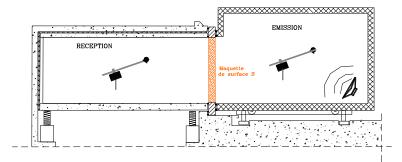
RÉSULTATS

f en / in Hz

ANNEXE 1: MÉTHODE D'ÉVALUATION ET EXPRESSION DES RÉSULTATS

INDICE D'AFFAIBLISSEMENT ACOUSTIQUE AU BRUIT AERIEN R

➤ Méthode d'évaluation : NF EN ISO 10140-2 (2021)


La norme NF EN ISO 10140-2 (2021) est la méthode d'évaluation de l'isolement acoustique aux bruits aériens des éléments de construction tels que murs, plancher, portes, fenêtres, éléments de façades, façades, ...

Le mesurage doit être réalisé dans un laboratoire d'essai sans transmissions latérales.

Le poste d'essai utilisé est composé de deux salles : une salle fixe contre laquelle nous fixons le cadre support de l'échantillon à tester et une salle mobile réalisant ainsi un couple « salle d'émission – salle de réception ». Ces salles et le cadre sont totalement désolidarisés entre eux (joints néoprènes) et sont conformes à la norme NF EN ISO 10140-5 (2021). La conception des salles (boîte dans la boîte) procure une forte isolation acoustique vis-à-vis de l'extérieur et permet de mesurer des niveaux de bruit de fond très faibles.

Mesure par tiers d'octave, de 100 à 5000 Hz :

- du niveau de bruit de fond dans le local de réception L_{BdF}.
- de l'isolement brut : L_E L_R
- de la durée de réverbération du local de réception T.

Calcul de l'indice d'affaiblissement acoustique R en dB pour chaque tiers d'octave :

$R = L_E - L_R + 10 \log (S/A)$

LE : Niveau sonore dans le local d'émission en dB

L_R: Niveau sonore dans le local de réception, corrigé du bruit de fond en dB

S : surface de la maquette à tester en m²

A : Aire équivalente d'absorption dans le local de réception en m²

A = (0,16 x V)/T où V est le volume du local de réception en m³ et T est la durée de réverbération du même local en s. Plus R est grand, plus l'élément testé est performant.

\triangleright Expression des résultats : Calcul de l'indice unique pondéré $R_w(C;C_{tr})$ selon la norme NF EN ISO 717-1 (2020)

Prise en compte des valeurs de R par tiers d'octave entre 100 et 3150 Hz avec une précision au 1/10ème de dB.

Déplacement vertical d'une courbe de référence par saut de 1 dB jusqu'à ce que la somme des écarts défavorables soit la plus grande tout en restant inférieure ou égale à 32,0 dB.

R_w en dB est la valeur donnée alors par la courbe de référence à 500 Hz.

Les termes d'adaptation à un spectre (C et Ctr) sont calculés à l'aide de spectres de référence pour obtenir :

- l'isolement vis-à-vis de bruits de voisinage, d'activités industrielles ou aéroportuaire : R_A = R_w + C en dB
- l'isolement vis-à-vis du bruit d'infrastructure de transport terrestre : RA,tr = RW + Ctr en dB

NIVEAU DE BRUIT DE CHOC NORMALISE L_N D' UN PLANCHER

Détermination du niveau de bruit de choc normalisé Ln d'un plancher lourd normalisé excités par une machine à choc normalisée.

Le mesurage doit être exécuté dans un laboratoire d'essai.

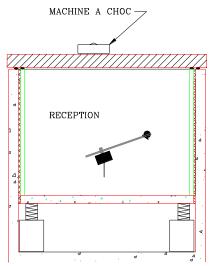
➤ Méthode d'évaluation : NF EN ISO 10140-3 (2013)

Mesure par tiers d'octave, de 100 à 5000 Hz :

- du niveau de bruit de choc Li dans la salle de réception
- du niveau de bruit de fond
- de la durée de réverbération du local de réception T

Calcul du niveau de bruit de choc normalisé L_n en dB pour chaque tiers d'octave :

$L_n = L_i + 10 \log (A/A_0)$


L_i : Niveau de bruit de choc mesuré dans la salle de réception et éventuellement corrigé du bruit de fond

A₀ : Aire de référence égale à 10 m² en laboratoire

A : Aire équivalente d'absorption dans le local de réception en m²

A = $(0,16 \times V)/T$ où V est le volume du local de réception en m³ et T est le durée de réverbération du même local en s

> Expression des résultats

Calcul du L_{n,w}:

Pour le calcul du $L_{n,w}$, prise en compte du L_n , par tiers d'octave de 100 à 3150 Hz avec une précision au $1/10^{\rm ème}$ de dR

Déplacement vertical d'une courbe de référence par saut de 1 dB jusqu'à ce que la somme des écarts défavorables soit la plus grande tout en restant inférieure ou égale à 32,0 dB.

L_{n,w} est la valeur donnée alors par la courbe de référence à 500 Hz.

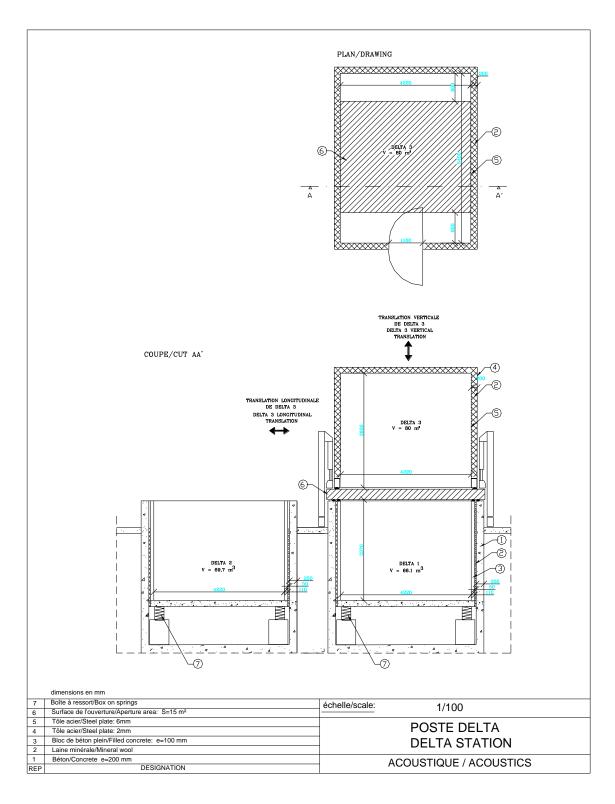
ANNEXE 2: APPAREILLAGE

Salle d'émission : DELTA 3

DESIGNATION	MARQUE	TYPE	N° CSTB
Chaînaa miaranhaniguaa	Pruäl 9 Kimr	Microphone 4943 20_00	
Chaînes microphoniques	Bruël & Kjær	Préamplificateur 2669	01_000208
Analyseur Multicanal	alyseur Multicanal Norsonic		21_000071
Bras tournant	Norsonic	Nor265	20_000085
Chaîne génératrice	LAB GRUPPEN / RME / Intel	IPD1200 / Fireface UC / NUC	20_000088
			97_000185
Sources	CCTD DUI AUDIO	Cube	97_000186
Sources	CSTB-PHL AUDIO	Cube	12_000420
			12_000415
Machine à choc	Bruël & Kjær	3207	12_000356

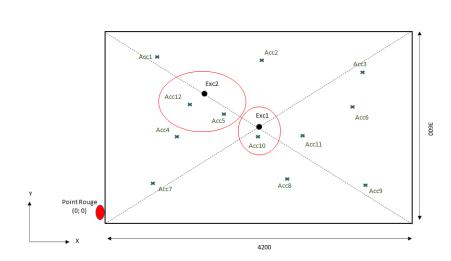
Salle de réception : DELTA 2

DESIGNATION	MARQUE	TYPE	N° CSTB
Chaînes microphoniques	Bruël & Kjær	Microphone 4943 Préamplificateur 2669	04_001519
			17_000113
Analyseur multicanal	Norsonic	Nor850-MF1	21_000070
Bras tournant	Norsonic	Nor265	20_000081
Chaîne génératrice	LAB GRUPPEN / RME / Intel	LAB1000 / Fireface UC / NUC	20_000087
Sources	CSTB-ELECTRO VOICE	Pyramide	97_000203
			20_000090


Salle de commande

DESIGNATION	MARQUE	TYPE	N° CSTB
Logiciel	Norsonic	Nor850	04_001519
Calibreur	Bruël & Kjær	4231	06_000175

ANNEXE 3: PLAN DU POSTE DELTA



ANNEXE 4: MESURES VIBRATOIRES

Les mesures vibratoire réalisées sur le plancher en bois sont réalisées selon la norme NF EN 16929 « Méthodes d'essais – Planchers en bois – Détermination des propriétés vibratoires ».

FREQUENCE FONDAMENTALE

La fréquence fondamentale est évaluée sur la base de mesures des fonctions de transfert entre l'accélération en différentes points du plancher et son excitation au marteau d'impact (respectivement 12 et 2 positions). Les positions des accéléromètres sont identiques quelle que soit la configuration de plancher considérée. La Figure 1 et le tableau ci-dessous montrent l'ensemble de ces positions.

-	X (mm)	Y (mm)
Acc1	1000	2760
Acc2	2360	2860
Acc3	3020	2700
Acc4	1370	1580
Acc5	1670	2100
Acc6	2940	1870
Acc7	910	860
Acc8	2440	1040
Acc9	3460	750
Acc10	2140	1760
Acc11	2540	2160
Acc12	1260	2240
Exc1	2100	1800
Exc2	1360	2360

Figure 1 - Positions des points d'excitations et de mesures accéléromètriques pour l'évaluation de la fréquence fondamentale

AMORTISSEMENT

Une fois la fréquence fondamentale déterminée, le plancher est excité en son centre (position Exc1) par un pot vibrant à cette même fréquence. L'accélération proche du centre du plancher (position Acc10) est alors enregistrée après l'arrêt de l'excitation et l'amortissement est évalué sur la base de la décroissance de la réponse accélérométrique.

L'amortissement est aussi évalué sur le facteur de qualité de la fréquence fondamentale à partir des fonctions de transfert mesurées sur le plancher.

CONFIGURATION 1: PLANCHER BOIS SEUL

La configuration 1 correspond au plancher de base simplement constitué des plaques sur les solives.

> Fréquences de résonance (Essai n° 3)

Les fonctions de transfert mesurées sont montrées Figure 2 ; la fréquence fondamentale est estimée à 25 Hz ; un second mode est identifié à 28,5 Hz et un troisième à 41,5 Hz.

La Figure 3 montre les déformées modales obtenues pour ces 3 modes.

Sur la base de cette analyse fréquentielle, l'amortissement évalué sur la fréquence fondamentale est de 3,6%.

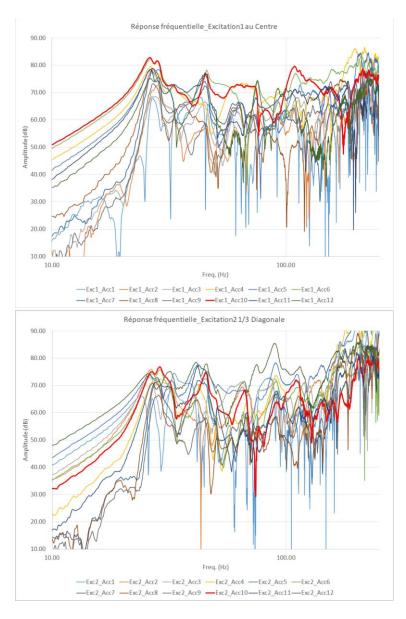


Figure 2 - Fonctions de transfert mesurées sur la configuration 1 du plancher

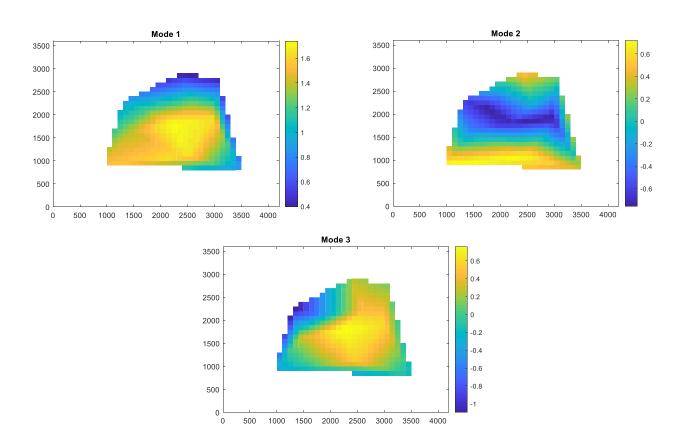


Figure 3 - Déformées modales pour la configuration 1 du plancher

> Amortissement (Essai n° 4)

La Figure 4 montre la décroissance mesurée pour une fréquence d'excitation de 25 Hz. Un amortissement moyen de 2,7% est ainsi obtenu.

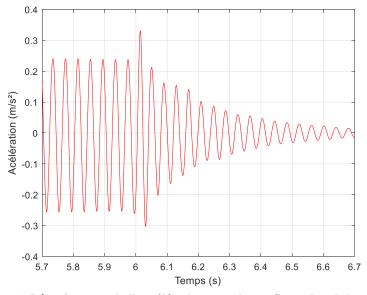


Figure 4 - Décroissance de l'accélération pour la configuration 1 du plancher

CONFIGURATION 2: PLANCHER BOIS LESTE

La configuration 2 correspond au plancher lesté.

> Fréquences de résonance (Essai n° 7)

Les fonctions de transfert mesurées sont montrées Figure 5; la fréquence fondamentale est estimée à 15,6 Hz ; un second mode est identifié à 18 Hz.

La Figure 6 montre les déformées modales obtenues pour ces 2 modes.

Sur la base de cette analyse fréquentielle, l'amortissement évalué sur la fréquence fondamentale est de 14%.

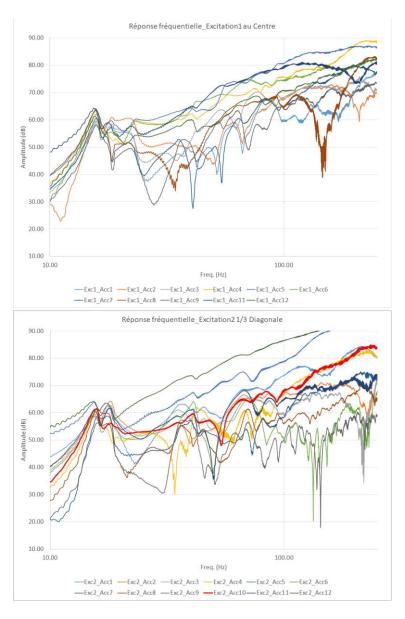
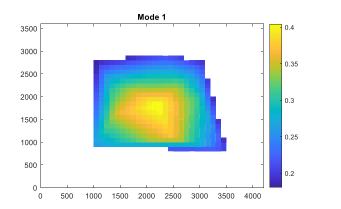



Figure 5 - Fonctions de transfert mesurées sur la configuration 2 du plancher

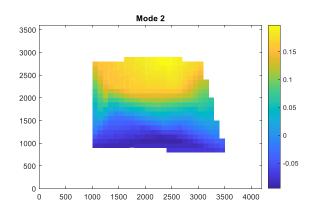


Figure 6 - Déformées modales pour la configuration 2 du plancher

> Amortissement (Essai n° 8)

La Figure 7 montre la décroissance mesurée pour une fréquence d'excitation de 15,6 Hz. Un amortissement de plus de 20% est obtenu sur la première décroissance d'amplitude, ensuite de 12%.

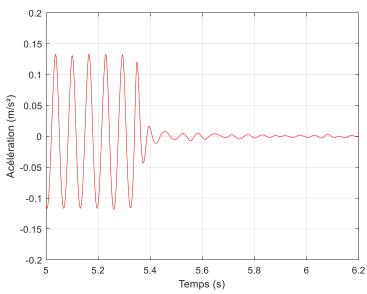


Figure 7 - Décroissance de l'accélération pour la configuration 2 du plancher

CONFIGURATION 3: PLANCHER BOIS LESTE AVEC CHAPE SECHE

La configuration 3 correspond au plancher lesté avec un système flottant sec.

> Fréquences de résonance (Essai n° 11)

Les fonctions de transfert mesurées sont montrées Figure 8; la fréquence fondamentale est estimée à 15 Hz ; un second mode est identifié à 18,5 Hz.

La Figure 9 montre les déformées modales obtenues pour ces 2 modes.

Sur la base de cette analyse fréquentielle, l'amortissement évalué sur la fréquence fondamentale est de 5,1%.

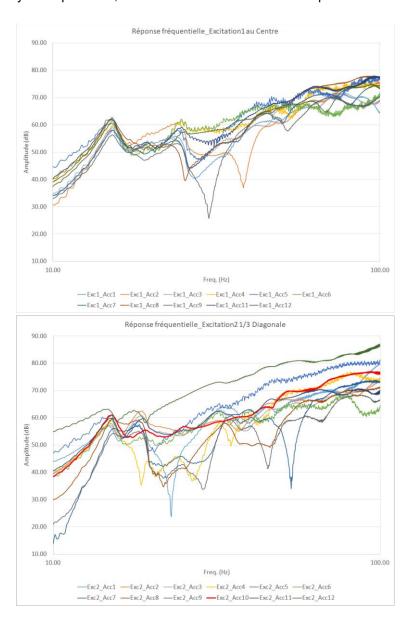


Figure 8 - Fonctions de transfert mesurées sur la configuration 3 du plancher

Figure 9 - Déformées modales pour la configuration 3 du plancher

Amortissement (Essai n° 12)

La Figure 7 montre la décroissance mesurée pour une fréquence d'excitation de 15 Hz. Un amortissement moyen de 6,8% est obtenu.

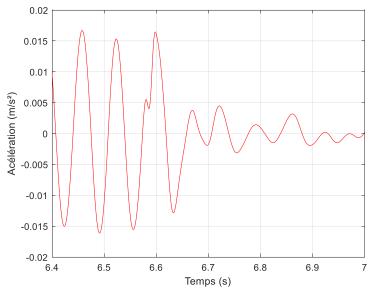


Figure 10 - Décroissance de l'accélération pour la configuration 3 du plancher

Adresse d'exécution des essais : 84 avenue Jean Jaurès - Champs-sur-Marne - 77447 Marne-la-Vallée

Fin de rapport