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ABSTRACT 

In the context of the growing utilization of biomass to produce energy and of the related need 

to decrease pollutant emissions from domestic wood combustion devices, this paper presents a 

new kinetic model of wood combustion considering especially in details the gas-phase reactions 

related to the combustion of the tars produced by the biomass devolatization. The tar production 

is predicted using a semi-detailed mechanism of the literature. The tar gas-phase combustion 

model has been built as a compilation of literature mechanisms already proposed for these 

species, except for hydroxyacetaldehyde for which a new oxidation mechanism has been 

written. Experiments on the thermochemical behavior of three types of wood (beech, fir and 

oak) were also performed in parallel of this work using Thermogravimetric Analysis (TGA). 

The new detailed kinetic model of wood combustion, BioPOx (Biomass Pyrolysis and 

Oxidation), has been tested against a wide range of experimental results published in literature. 

This model fairly reproduces experimental results for pyrolysis and combustion of biomass and 

its constituents, key produced tars from biomass pyrolysis, and key compounds for Polycyclic 

Aromatic Hydrocarbons (PAH) formation, for a wide range of experimental devices and 

operating conditions.  

https://doi.org/10.1016/j.fuel.2019.01.093
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Introduction 

The current global warming issues, especially the concerns about the alarming rise of 

atmospheric CO2 [1], have increased the importance of the use of fuels from renewable 

resources, primarily biomass. The use of wood and biomass for domestic small combustion 

installations (fireplaces, stoves and boilers) is widely widespread in countries where heating is 

needed in winter [2]. Residential wood burning significantly affects the air quality because it is 

one of the largest sources of fine particles (PM2.5, particulate matter of aerodynamic diameter 

below 2.5 m). In addition, it is responsible for the emissions of a number of other pollutants 

(carbon and nitrogen monoxides, oxygenated hydrocarbons such as aldehydes and ketones, 

alcohols, furans and acids, PAH...)[3]. Environmentally sustainable wood heating will require 

a better understanding of the chemistry of the pollutant formation in such devices. Especially 

the development of kinetic models involving the chemical reactions responsible for pollutant 

formation is needed. 

Lignocellulosic biomass pyrolysis and combustion are multi-scale, multi-phase, and multi-

component processes [4], since biomass has a complex structure consisting mainly of a mixture 

of biopolymers: cellulose, hemicellulose, lignin with a small amount of extractives [5].  

Biomass combustion includes four stages: drying, pyrolysis, homogeneous combustion of 

volatile products and heterogeneous combustion of char. Pyrolysis is the first step in any energy 

recovery processes such as combustion and gasification [6]. Modeling biomass pyrolysis is 

therefore essential for understanding combustion [7], which justifies the abundance of work in 

this field within the literature [8–11].  
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In the literature, two simplified approaches are generally proposed to describe biomass thermal 

degradation: the homogeneous approach, where biomass is considered as a homogeneous solid 

and the heterogeneous approach which takes into account the contribution of each biomass 

constituents (cellulose, hemicellulose and lignin) to the overall mechanism. According to the 

first approach, one or some global chemical reactions may be sufficient to describe wood 

devolatilization. A one-step global mechanism is the most simplified kinetic model used by 

many works in the literature [12–17]. Biomass decomposes into volatile compounds and a solid 

residue. This type of mechanism is generally used to model mass loss either by pyrolysis or 

thermogravimetric analysis (TGA) [8]. It is also used to model coupled chemical kinetics and 

physical phenomena, using for example a CFD (Computational Fluid Dynamics) approach 

[15][17]. The second common type of kinetic models in the homogeneous approach is 

independent competitive reaction scheme. According to this model, biomass produces 

competitively tar, gases, and char [2]. By using this reaction scheme, yields of tar, char and 

permanent gases can be predicted, which is not the case with one-step global mechanism. 

Generally, this second type of model is coupled to secondary reactions of tars formed during 

pyrolysis [18–22]. Multistep mechanisms are also discussed. In those schemes, an intermediate 

solid is formed by the first step and continues to decompose into secondary products [23].  

According to the heterogeneous approach, the pyrolytic behavior of biomass is deduced from 

that of its major constituents: independent parallel reaction mechanisms, representing 

respectively cellulose, hemicellulose and lignin degradation, have been widely used to model 

biomass pyrolysis [24–26]. This type of mechanism allows a better prediction of product yields. 

It can be applied to a variety of biomass since the content of cellulose, hemicellulose and lignin 

differs from one type to another. Interactions between biomass constituents is neglected. A 

number of studies uses the Broido-Shafizadeh’s scheme (Fig.1) to model biomass pyrolysis. 

This scheme, which was developed for the first time for cellulose degradation, has been applied 
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to lignin, hemicellulose and wood pyrolysis. Biomass is converted to intermediate solid called 

"active biomass" (reaction 1) which decomposes by competitive reactions (reactions 2 and 3) 

into gaseous, liquid and solid products [8]. 

 

Fig.1. Broido-Shafizadeh’s scheme to model biomass pyrolysis [27]. 

The most complex reaction scheme in the literature to simulate biomass pyrolysis following the 

heterogeneous approach is that of Ranzi who developed in 2008 a first multi-step semi-detailed 

mechanism [28] extending the Broido-Shafizadeh’s approach. Dussan et al. proposed a new 

semi-detailed kinetic mechanism based on a recent Ranzi scheme [29] respectively for 

hemicellulose [30] and lignin pyrolysis [31]. More advanced approaches would involve micro-

kinetic mechanistic models based on theoretical calculations as proposed by the Broadbelt team 

for cellulose [32–34] and hemicellulose [35] and by Horton et al. [36] for biomass pyrolysis 

and gasification.  

Compared to pyrolysis, significantly fewer studies were published about the kinetic modelling 

of biomass combustion. Thermal degradation under oxidative atmosphere is indeed more 

complex. The presence of an oxidizing agent (air, oxygen, etc.) generates homogenous gas-

phase reactions between oxygen and volatiles compounds released during devolatilization and 

heterogeneous reactions between oxygen and char [37].  

A two-stage reaction kinetic scheme was proposed by Gil et al. [37] and Shen et al. [38] to 

represent biomass and char combustion. Pérez et al. [39] proposed a scheme including three 

independent reactions to represent respectively, cellulose, hemicellulose and lignin combustion 

coupled with a fourth reaction representing char oxidation. Wang et al. [40] consider two 



 

5 

 

simultaneous parallel reactions: an overall reaction describing biomass combustion and two 

individual reactions representing respectively volatiles and carbon residue oxidation. Navarrete 

Cereijo et al. [41] modeled biomass combustion as three sequential stages, which are drying, 

pyrolysis and char oxidation. In this work [41], as is shown in Fig.2, five reactions were used 

to represent biomass decomposition into tars (reaction 1) , volatiles (reaction 2) , and char 

(reaction 3), as well as tar degradation in volatiles (reaction 4) and char (reaction 5). The char 

combustion stage was modeled using three reactions (reactions 6, 7 and 8): direct combustion 

with oxygen and two reactions respectively with CO2 and H2O.  

 

Fig.2. Kinetic scheme used by Navarrete Cereijo et al. to model biomass combustion [41]. 

A similar approach was used by Mätzing et al. [42] to model biomass combustion in fixed bed 

reactor with a slightly more detailed pyrolysis mechanism considering cellulose, hemicellulose 

and lignin devolatilization. However, approaches using global reactions cannot be an 

appropriate method to predict in details pollutant formation during biomass combustion in 

stoves or industrial systems for instance. 

The main aim of this paper is to develop and validate a new detailed kinetic model of wood 

pyrolysis and combustion in order to predict pollutant emissions. This kinetic mechanism is 

tested against new TGA results obtained in parallel of this work, as well as a wide range of 

experimental results published in literature. The used literature results (29 datasets) and the 
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comparisons with the present model predictions have been collected and organized as a 

database given as two spreadsheets in Supplementary Material (SM). 

I/ Description and validations of the chemical model 

A new detailed kinetic mechanism, BioPOx, has been developed in Chemkin format. It includes 

two parts, (1) a semi-detailed mechanism to describe biomass pyrolysis, (2) a detailed 

mechanism of the gas-phase combustion of the volatiles species. 

I.1. Semi-detailed mechanism to describe biomass pyrolysis and char combustion 

I.1.a. Description of the model 

 

From 2008, when the team of Ranzi [28] in Milano proposed the first multi-step semi-detailed 

mechanism to simulate biomass pyrolysis, this model has been progressively up-dated [29,43–

46]. In this work, we used the 2016 version developed by Debiagi et al. [45] without change. 

This last kinetic mechanism consists of 27 semi-detailed reactions and 47 species. 22 species 

in the solid and metaplastic phase are involved. Thermodynamic data of these solid species are 

taken from [44]. The method for writing this mechanism is based on grouping similar species 

and lumping related reactions.  

The model of Debiagi et al. [45] uses a detailed description of biomass, characterized as a 

mixture of three main constituents: cellulose, hemicellulose and lignin, the contents of which 

may significantly vary depending on the different types of biomass. Wood, even after drying, 

can still contains an average of 10-15% in mass of moisture [47]. However, since water can be 

considered mostly as a dilutant gas under the studied conditions, its amount has been neglected 

in this kinetic work. Hydrophobic and hydrophilic wood extractives, consisting mainly of 

terpenes, phenolic compounds, fatty and resin acids and triglycerides [48], were also neglected 

in our work as a first approach, because they account for less than 10% in mass of the entire 

biomass [28]. Lignocellulosic biomass is also characterized by a content of minerals 
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(potassium, calcium, sodium, silicon, phosphorus, chlorine and magnesium), less than 1% for 

wood [49]. In addition to the three main constituents, extractives and minerals, wood and woody 

biomass contains 0.1-0.7% of nitrogen and 0.01-0.42% of sulfur [47]. The presence of minerals, 

nitrogen and sulfur was not taken into account in our study.  

Each constituent is represented by a pseudo-compound. Cellulose (CELL) is represented by the 

glucose monomer (C6H10O5). Xylan (C5H8O4) is the monomer chosen for hemicellulose (HCE). 

Lignin, having a complex structure, is represented by three reference compounds LIGC 

(C15H14O4), LIGH (C22H28O9), and LIGO (C20H22O10), richer in C, H and O, respectively. The 

biomass characterization in this three constituents is a preliminary but a very important step. 

The characterization procedure consists of determining from the elemental composition of 

biomass (C/H/O, corrected by not considering water, N, S and other minerals), the biochemical 

composition in terms of cellulose, hemicellulose and lignin [29].  

Assuming that there is no interaction between the three constituents, the devolatilization of 

biomass is thus considered a straightforward combination of the pyrolysis of the five reference 

components. As it will be described in part I.2, the produced volatile compounds may undergo 

secondary pyrolysis or combustion reactions in the gas phase. As shown in table 1, 

heterogeneous char combustion reactions were added to the model of Debiagi et al. [45] 

according to what was proposed by Navarrete Cereijo et al. [41] (see Fig. 2) and by Ranzi et al. 

[50]. 

Table 1: Heterogeneous char reactions (The rate constants [k=ATnexp(-Ea/RT)] are given in 

mol, s and cal units). 

 

 

 

Reaction  A n Ea 

(1) Char+O2=>CO2 1.2e+10 0.0 32300.0 

(2) Char+0.5O2=>CO 2.5e+11 0.0 38200.0 

(3) Char+H2O=>CO2 2.5e+09 0.0 52000.0 
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I.1.b. Tests of the model 

The model described in part I.1.a (in all this part, the model of Debiagi et al. [45] + the 3 

reactions of Table 1 was used) has been tested both on TGA results obtained on purpose for 

this work, and on a wide range of literature results. The biomass characterization in this three 

constituents was taken from a database built in Milano [29]. 

I.1.b./ New TGA results 

 

TGA experiments were carried out to study the thermal degradation of beech, oak and fir wood 

chips locally produced from the Alsacian forest and purchased from Agrivalor (Hirsingue, 

France). They were ground and sized to 4 mm of particle diameter. Hundred grams of each 

specie were dried at 105°C for 48h in an oven and then stored in a desiccator for further 

analyses. The physical and chemical properties of woods, as determined in the study of Schmidt 

et al. [51], are shown in table 2. TGA were performed from ground and dry wood samples 

(masses ranging from 5 to 10 mg) under an oxidative (air) atmosphere in a TA Instruments 

Q500 thermal analyzer under a temperature ramp equal to 5 °C.min-1 from room temperature 

to 700°C. To confirm the reproducibility of results, the experiments were carried out at least 

six times, for each sample. The accuracy of the scale given by the manufacturer is about 0.1 μg. 

The standard deviations on the values of the maximum mass loss rates in DTG are from 1 to 

2% whatever the nature of the sample. Since the model of Debiagi et al. [45] has been optimized 

for low heating rates, this new experimental study under oxidative conditions has been made 

with a heating rate lower to what can be found in literature. 
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Table 2: Physical and chemical properties of woods used in our TGA experiments 

according to Schmidt et al. [51]. 

 Elemental (wt%) Chemical (wt%) Properties (%) 

Wood C H N S O / CELL HCE LIGC LIGH LIGO Humiditya  Ash contentsb  

Fir 48,9  6,0  <0,1  <0,03  41,8 <3,3 45,0 24,4 4,0 21,1 5,5 24,6 0,36 

Oak 48,5  5,9  <0,1  <0,03  42,7  <2,9  45,1 34,7 2,6 1,7 15,9 36,3  0,81 

Beech 48,3  6,0  <0,1  <0,03  43,5  <2,2  53,5 25,1 0,0 5,8 5,8 41,4 1,40 

a : On raw basis. 
b: On dried basis. 

/: Under-determinated 

 

             

Fig.3. TGA and DTG (Derivative Thermo-Gravimetric) curves of beech, fir and oak wood 

under air at 5 °C/min (points: experimental data obtained in this work; lines: model 

predictions). 

Thanks to the model previously described, the mass loss observed in these TGA experiments 

can be well predicted. Comparison between experimental results and model predictions of the 

thermal degradation of raw beech, fir and oak wood under air is shown in Fig.3. The small 

overprediction in TGA curves observed below 300°C is due to the fact that water evaporation 



 

10 

 

during the drying step is neglected. The agreement between experimental results and model 

predictions for TGA is better in case of fir which contains less amount of ashes than beech and 

oak, as shown in table 2. From DTG (Derivative Thermo-Gravimetric) curves, it is possible to 

obtain the instantaneous mass loss rates at all temperatures. Three steps can be distinguished as 

shown by the three peaks: the devolatilization of hemicellulose between 200 and 300°C, the 

devolatilization of cellulose, between 300 and 350°C, and the devolatilization of lignin 

accompanied by the char oxidation 400 and 500 °C. 

I.1.b./ Tests against literature results 

 

To better know the limitations of this model, we have tested it against the results of a wide 

range of experimental studies as shown in Table 3. These tests were performed on 10 cases of 

primary pyrolysis and TGA of wood or wood components (see details and results in a 

spreadsheet in supporting material).  

The experimental studies 1, 2 and 6 were already modeled in the literature [28, 30, 31, 39, 41, 

47] while the experimental studies 3-5 and 7-10 are simulated for the first time in this paper. 

As shown in Table 3, a majority of studies was performed using TGA. TGA experiments (as 

well as Derivative thermo-gravimetric (DTG) indicating mass loss rates) are modelled with the 

software CHEMKIN-PRO [53], considering the reactor as a Perfectly Stirred Reactor (PSR) or 

as a batch reactor if the sample is enclosed in a vessel.  

Williams and Besler [54] studied the effect of the heating rate on the degradation of pine wood, 

cellulose and hemicellulose under an inert atmosphere (nitrogen). Two heating rates were used: 

5 and 20° C.min-1. Fig.4 compares model predictions and the experimental measurements of 

Williams and Besler [54] for degradation of pine wood and its constituents (cellulose and 

hemicellulose). The agreement between experimental results and model predictions is the best 

in the case of cellulose. The hemicellulose degradation, considered as a polymer of xylan, 
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begins at lower temperatures in experiments than what is predicted, because its decomposition 

forms more solid residue (20 wt%) than in the case of cellulose (5 to 10 wt%). Consequently, 

the predicted temperature for the start of the decomposition of the pine wood is also slightly 

higher than what was experimentally observed.  

 

Fig.4. TGA curves of pine wood, cellulose and hemicellulose under nitrogen at 5 °C/min and 

20 °C/min (points: experimental data [54]; lines: model predictions). 
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Table 3: Operating conditions considered for the tests of the model against experimental studies of devolatilization in the literature – 

Simulations for the studies in bold are shown in the text, simulations for the other studies are shown in SM. F : Simulated for the first time. 

N° Experimental study Reactor 
Studied 

compound 
Dilutant Temperature (°C) 

Heating rate 

(°C/min) 

Previous 

simulations 
1 Jakab et al. 1995 [55] TGA 6 types of lignin Ar 200-900  20 [28,31,46,52] 

2 
Williams and Besler 

1996 [54] 
TGA  

Pine wood, 

cellulose and                                 

hemicellulose 

N2 300-720  5, 20, 40 and 80 [28,44,46,52] 

3 Shen et al. 2009 [38] TGA  
Pine, aspen, birch 

and oak wood 
Air 40-800 10 and 100 F 

4 Shen et al. 2013 [56] TGA  Lignin 
He, He + 7%, 

20%, 60% O2 
20-800 20 F 

5 Shen et al. 2013 [57] TGA  Cellulose 
He, He + 7%, 

20%, 60% O2 
50-800 20 F 

6 Werner et al. 2014 [58] TGA (DTG) Cellulose, Xylan N2 Final T = 600  10 [30] 

7 Shen et al. 2015 [59] TGA Hemicellulose 
He, He + 7%, 

20%, 60% O2 
20-800  20 F 

8 
Le Brech et al. 2016 

[60] 
U-shape fixed bed and 

TGA  

Miscanthus, 

douglas, oak 

Ar  

20-Final T = 280, 300, 

320, 350, 400 and 500  

5  

F 

9 Le Brech et al. 2016 [61] 
Miscanthus, and 

cellulose  
Final T = 500  F 

10 Chen et al. 2016 [62] lab-scale fixed bed  Poplar wood N2 
400, 450, 500, 550 and 

600  
10, 30 and 50 F 
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In order to see the effect of adding air in TGA, Fig. 5 reports a comparison between predictions 

and experiments for oak thermal degradation respectively under air (this study, data of Fig. 3) 

and argon atmospheres by Le Brech et al. [60]. The difference between the two curves occurs 

mainly at high temperatures (>400°C) where char reacts with oxygen from air.  

 

Fig.5. TGA curves of oak wood (full points: experimental data in air; empty  points: 

experimental data in argon [60]; lines: model predictions (continuous line: in air, dashed line: 

in argon). 

The results shown here and in the spreadsheet of supplementary material show that, in most 

cases, for wood and its constituents, either under inert or oxidative atmosphere, the comparisons 

between TGA experiments and model predictions show reasonable agreement at low heating 

rates. The effect of a higher heating rate was studied by Shen et al. [38] using two types of 

wood: softwood (pine) and hardwood (birch, aspen and oak). Elemental, approximate and 

chemical compositions of the studied woods are shown in table 4. The thermal degradation of 

these biomasses under air, at two heating rates is shown in Fig.6. The model predictions of 

woods degradation at 10°C/min are satisfactory while predicted TGA curves at 100°C/min are 

slower than experiments. This is due to the fact that the model of Debiagi et al. [45] has been 

optimized for lower heating rates. Note however that the agreement is slightly better in the case 
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of pine and oak than for Aspens and birch containing more ashes, the possible catalytic effect 

of which is neglected in the model.  

Table 4: Elemental, approximate and chemical compositions of woods used in the study 

of Shen et al. [38]. 

Wood Elemental (wt%) Approximate (wt%) Chemical (wt%) 

 C H N O S Humidity Volatiles Ash CELL HCE LIGC LIGH LIGO 

Pine 41,89 4,5 0,22 40,19 / 12,9 71,49 0,3 0,446 0,347 0,032 0,022 0,154 

Aspens 45,84 5,22 0,36 39,97 0,01 8,19 80,37 0,41 0,567 0,274 0,000 0,051 0,108 

Birch  44,41 3,48 0,27 36,65 / 11,39 74,36 0,76 0,526 0,271 0,000 0,099 0,104 

Oak 45,37 5,03 0,28 41,29 0,01 8,78 76,82 0,24 0,451 0,347 0,026 0,017 0,159 

 

 

Fig.6. TGA curves of birch, aspen, pine and oak wood for two heating rates (points: 

experimental data [38]; lines: model predictions). 
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Kinetic mechanisms can also be used to predict product yields obtained during wood pyrolysis. 

One of the most detailed study of product yields during wood pyrolysis is that performed by Le 

Brech et al. [60] in a U-shape fixed bed reactor using two types of wood: oak and Douglas. The 

reactor was modelled as a Plug Flow Reactor (PFR). Fig. 7a reports the comparison between 

predictions and experiments for the mass loss during slow pyrolysis [60] and shows a 

satisfactory agreement.  

Tar, solid and gas yields are shown in Fig. 7b, with an acceptable agreement between 

experiments and modeling.  

 

Fig.7. Slow pyrolysis of Douglas and oak wood as a function of temperature: (a) mass loss; 

(b) tar, solid and gas yields from the slow pyrolysis of Douglas and oak (shaded boxes: 

experimental data [60]; full boxes: model predictions). 
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For the same study [60], Fig.8 compares the predicted evolution of CO and CO2, the main 

gaseous products, to experimental results [60]. In both model and experiments, CO2 is the major 

gas compounds. The model predictions overestimate the mass fraction of CO2 and CO for all 

the studied cases, except for CO mole fraction for oak pyrolysis at 300°C and for CO2 mole 

fraction for oak pyrolysis at 500°C. 

 

Fig.8. Slow pyrolysis of Douglas and oak wood as a function of temperature: CO and CO2 

yields (shaded boxes: experimental data [60]; full boxes: model predictions). 

 

Using the same experimental set-up, Le Brech et al. [60] have also performed a study of 

Miscanthus pyrolysis (the experimental and simulated data for mass loss and tar, solid and gas 

(considered as the sum of CO, CO2, H2, CH4, C2H4, C2H6 and C6H6) yields are given in SM). In 

this study, as is shown in Fig.9, the authors have also analyzed product yields for products 

gaseous at room temperature (CO2 (Fig. 9a), CO (Fig. 9b) and CH4 (Fig. 9c), as well as for one 

of the primary tars, phenol (Fig. 9d).  
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Fig.9. Slow pyrolysis of miscanthus: CO,CO2 , CH4 and phenol yields (points: experimental 

data [60]; lines: model predictions). 

The model predictions of CO2 formation during miscanthus pyrolysis are satisfactory while the 

mass fraction of CO and that of CH4 are underestimated at high temperatures. The comparison 

between experimental and model predictions for phenol formation shows a reasonable 

agreement at low temperatures (< 400°C) for the shape of the temperature dependence.  

In summary, thanks to this devolatilization model, for TGA under inert or oxidative atmosphere, 

the comparisons between experiments and model predictions show an acceptable agreement at 

low to moderate heating rates. Yields of primary pyrolysis products can also be fairly predicted 

until moderate temperatures. For high temperatures, gas-phase reactions effect cannot be 

neglected. Hence the need to consider primary tars degradation mechanism, which will be 

described in the next section.  
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I.2/ Detailed mechanism of the gas-phase combustion of the volatiles species 

I.2.a. Description of the model 

 

The second part of the BioPOx mechanism considers the gas-phase reactions induced by the 

combustion of the volatile species produced by the biomass devolatilization. As is shown in 

table 5, the BioPOx mechanism combines four chemical mechanisms: (1) a first one taken from 

[63] to describe the combustion of usual hydrocarbons, including aromatic compounds, such as 

benzene or toluene, or oxygenated compounds, such C1-C10 aldehydes or phenol, (2) a chemical 

mechanism for nitrogen oxides NOx formation [64], (3) detailed mechanisms of the combustion 

of volatiles species chosen as surrogates of biomass tars, as shown in the table 6, and finally (4) 

the lumped mechanisms of the pyrolysis of levoglucosan (LVG), glyoxal and 

hydroxymethylfurfural (HMFU) taken from the secondary reactions proposed by Debiagi et al. 

[45]. All together, the BioPOx model (devolatilization + gas phase secondary pyrolysis and 

combustion) including 710 species and 5035 reactions, is given in Chemkin format in SM. 

 

Table 5: Structure of BioPOx: detailed biomass combustion mechanism 

representing solid devolatilization, gas phase secondary pyrolysis and 

combustion.      
 

Hydrocarbon combustion 
NOx thermal 

formation  

Combustion of key 

tar compound  

Secondary pyrolysis of other volatile 

species  

Husson et al. 2013 [63]  Song et al. 2018 [64] See Table 6 Debiagi et al. 2016 [45] 

Detailed oxidation mechanisms of  

C0-C8 hydrocarbons (e.g. 

ethylbenzene) and oxygenated 

compounds including aromatic ones 

(e.g. phenol, benzaldehyde).  

  

Detailed mechanism 

of NOx formation. 

Detailed 

mechanisms of the 

combustion of 

volatiles species 

chosen as surrogates 

of biomass tars 

Semi-detailed mechanisms of the 

pyrolysis of levoglucosan (LVG),  

glyoxal and hydroxymethylfurfural 

(HMFU). 

 

 

Table 6 reports the volatiles species chosen as surrogates of biomass tars. These compounds are 

produced from the primary pyrolysis of the three wood constituents. The mixture cellulose and 
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hemicellulose (holocellulose) is the source of hydroxyacetaldehyde, 5-methylfurfural, furfural 

and furan and its derivatives. Lignin can lead to the formation of anisole and guaiacol. Except 

for hydroxyacetaldehyde (HAA) for which a new oxidation mechanism has been written, the 

model used for the different listed surrogates are taken from literature as is shown in Table 7.  

The most detailed models in the literature for LVG, HMFU and glyoxal decomposition are 

those already included in the lumped model of Debiagi et al. [45] which contains 3 types of 

metathesis and 5 unimolecular reactions for LVG, 1 type of metathesis and 2 unimolecular 

reactions for HMFU and 1 type of metathesis and 1 unimolecular reactions for glyoxal. 

Table 6: Volatiles species chosen as surrogates of biomass tars. 

 

Species  

(name in 

mechanism) 

Chemical name Formula Structure Mechanism 

HOCHO Formic acid  CH2O2 
 

Battin-Leclerc et al. 2008 [65] 

CH3CO2H Acetic acid  C2H4O2 
 

Battin-Leclerc et al. 2008 [65] 

C2H4O2 
Hydroxyacetaldehyde 

(HAA) 
C2H4O2  

This study 

Furan Furan C4H4O 
 

Tran et al. 2017 [66] 

MF 2-methylfuran C5H6O 

 

Tran et al. 2017 [66] 

DMF 2,5-dimethylfuran C6H8O 
 

Tran et al. 2017 [66] 

furylCHO  Furfural  C5H4O2  
 

Nowakowska 2014 [67] 

C6H5OCH3 Anisole C7H8O 
 

Nowakowska et al. 2014 [68] 

MF-CHO 5-methylfurfural C6H6O2 
 

Nowakowska 2014 [67] 

guaiacol Guaiacol C7H8O2 
 

Nowakowska 2014 [67] [69] 

 

 

Because HAA is one of the most important products derived from the pyrolysis of holocellulose 

and no more detailed model than that of Debiagi et al. [45] was available, we have developed 

a new dedicated mechanism. The new detailed kinetic mechanism for the pyrolysis and 
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oxidation of HAA is composed of 29 reactions, including unimolecular initiations, metathesis, 

decomposition and isomerization as is shown in table 7.  

Vinyloxy and hydroxyl radicals are formed by breaking the HO-C bond (reaction 1 in table 7) 

while the breaking of C-C bond (reaction 2) leads to formyl radical (CHO) and CH2OH radical. 

Hydroxyl-vinoxy radical (R100HOCHCHO) and H-atom are obtained by breaking the OC-H 

bond (reaction 3). Reactions (4) and (5) produce R101OCH2CHO and R102HOCH2CO 

radicals by breaking respectively the H-OCCH and the HOCC-H bonds. Radicals 

R100HOCHCHO, R101OCH2CHO and R102HOCH2CO are also yielded by metathesis 

reactions (reactions 6-16). Metathesis reactions involved H-atom, hydroxyl, methyl, formyl and 

CH2OH radicals. Radicals R100HOCHCHO and R101OCH2CHO can interchange by 

isomerization by internal H-transfer (17) and lead to radical R102HOCHO (reactions 18 and 

19). R103HOC2H4O and R104HOCHCHOH are obtained by H-addition on the C=O bond 

(reactions 20 and 21).  

R100HOCHCHOH can react by breaking a C-H bond yielding glyoxal (reaction 22). 

R101OCH2CHO can react by -scissions by breaking a C-C bond to give formaldehyde and 

CHO radical (reaction 23) and by breaking a C-H bond yielding glyoxal (reaction 24). 

R102HOCHO can react by -scissions to produce CO and CH2OH radical (reaction 25), which 

can easily isomerize in formaldehyde, by -scissions by breaking a C-O bond to give ketene 

and OH radical (reaction 26), and by -scissions by breaking a C-H bond yielding glyoxal 

(reaction 27). 

R103HOC2H4O can react by -scissions by breaking a C-C bond to give formaldehyde and 

CH2OH radical (reaction 28). 

R104HOCHCHOH can react by -scissions by breaking a C-C bond to form acetaldehyde and 

OH radical (reaction 29). 
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Thermodynamic data were calculated based on group additivity Benson method using 

THERGAS software [70]. Kinetic rate constants were determined by analogy with those of 

similar reactions (see footnotes in Table 7). 

Table 7: Primary mechanism for HAA oxidation. The rate constants (k=ATnexp(Ea/RT) 

are given in mol, s and cal units). 

 
Reaction A n Ea References  

Unimolecular initiation  

(1) OH+CH2CHO=C2H4O2 6.0e+13 0.0 0.0 Estimateda 

(2) C2H4O2 = CHO+CH2OH 6.0e+14 0.0 79100.0 Estimatedb 

(3) H+R100HOCHCHO =C2H4O2  1.0e+14 0.0 0.0 Estimatedc 

(4) H+R101OCH2CHO =C2H4O2  1.0e+14 0.0 0.0 Estimatedc 

(5) H+R102HOCH2CO =C2H4O2  1.0e+14 0.0 0.0 Estimatedc 

Metathesis 

(6) C2H4O2+H = R100HOCHCHO+H2 3.0e+14 0.0 10000.0 Estimatedd 

(7) C2H4O2+H = R101OCH2CHO+H2 4.2e+06 2.1 4900.0 Estimatede 

(8) C2H4O2+H = R102HOCH2CO+H2 4.0e+13 0.0 4200.0 Estimatede 

(9) C2H4O2+OH = R100HOCHCHO+H2O 1.0e+13 0.0 2000.0 Estimatedd 

(10) C2H4O2+OH = R101OCH2CHO+H2O 5.4e+05 2.0 -340.0 Estimatede 

(11) C2H4O2+OH = R102HOCH2CO+H2O 4.2e+12 0.0 5000.0 Estimatede 

(12) C2H4O2 +CH3 = R100HOCHCHO+CH4 4.0e+12 0.0 11000.0 Estimatedd 

(13) C2H4O2+CH3 = R101OCH2CHO+CH4 6.7e+08 3.1 6935.0 Estimatede 

(14) C2H4O2+CH3 = R102HOCH2CO+CH4 2.0e-06 5.6 2500.0 Estimatede 

(15) C2H4O2+CHO = R102HOCH2CO+HCHO 2.0e-06 5.6 2500.0 Estimatede 

(16) C2H4O2+CH2OH = R102HOCH2CO+CH3OH 2.0e-06 5.6 2500.0 Estimatede 

Isomerization  

(17) R101OCH2CHO = R100HOCHCHO 6.5e+11 1.0 33400.0 Estimatedf 

(18) R100HOCHCHO = R102HOCH2CO 3.2e+11 1.0 30100.0 Estimatedf 

(19) R101OCH2CHO = R102HOCH2CO 1.9e+12 1.0 27600.0 Estimatedf 

Additions 

(20) R103HOC2H4O = C2H4O2+H  2.0e+14 0.0 23300.0 Estimatedg 

(21) R104HOCH2CHOH = C2H4O2+H  3.0e+13 0.0 38000.0 Estimatedg 

Reactions of R100HOCHCHO 

(22) R100HOCHCHO = CHOCHO+H 3.0e+13 0.0 34800.0 Estimatedh 

Reactions of R101OCH2CHO 

(23) R101OCH2CHO = HCHO+CHO 8.0e+13 0.0 21500.0 Estimatedd 

(24) R101OCH2CHO = CHOCHO+H 2.0e+14 0.0 23300.0 Estimatedd 

Reactions of  R102HOCH2CO 

(25) CO+R6CH2OH = R102HOCH2CO 5.0e+11 0.0 6900.0 Estimateda 

(26) CH2CO+OH = R102HOCH2CO   5.4e+12 0.0 00000.0 Estimateda 

(27) CHOCHO+H  = R102HOCH2CO   7.5e+12 1.0 1450.0 Estimatedd 

Reactions of  R103HOC2H4O 

(28) R103HOC2H4O = CH2OH+HCHO 8.0e+13 0.0 21500.0 Estimatedd 

Reactions of   R104HOCH2CHOH 

(29) R104HOCH2CHOH => OH+CH3CHO 6.1e+11 0.0 23600.0 Estimatedg 

a: Rate constant taken equal to that the recombination of methyl and hydroxyl radicals to form methanol as proposed by Baulch et al. [71]: 

CH3+OH=CH3OH. 

b: Rate constant taken equal to that the unimolecular initiation of acetaldehyde as proposed by Yasunaga et al. [72] : with the A-factor multiplied 
by 0.4. 

c: Rate constant taken equal to that of the recombination of H atoms with alkyl radicals as proposed by Allara et Shaw [73]. 

d: Analogy-Rate constant taken equal to that of the similar reaction in the case the pyrolysis of acetaldehyde  proposed by Yasunaga et al. [72]. 
e: Analogy-Rate constant taken equal to that of the similar reaction in the case the pyrolysis or oxidation of methanol or acetaldehyde as 

proposed by Baulch et al. [71]. 

f: Rate calculated using software KINGAS [74]. 
g: Analogy-Rate constant taken equal to that of the similar reaction in the case the oxidation of ethanol as proposed by Tran et al. [75]. 

h: Analogy-Rate constant taken equal to that of the similar reaction in the case the oxidation of ethanol as proposed by Tran et al. [75]: 

C2H4OH=H+CH3CHO. 
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I.2.b. Validation of the model 

 

The BioPOx model has been validated on 19 gas-phase pyrolysis and combustion studies of 

key compounds of biomass pyrolysis (HAA, anisole, furan and its derivatives, furfural and 

5-methylfurfural, guaiacol, phenol and levoglucosan (LVG)), of key compounds for PAH 

formation (benzene, ethylbenzene, toluene, acetylene ...) and of biomass and its constituents as 

shown in Table 8. The experimental studies 1, 3, 4-8, 10-13 and 15-19 were already modeled 

in the literature while the experimental studies 2, 9 and 14 are simulated for the first time in this 

paper. Fig.9 and Fig.10 display comparisons between model and experiments for two examples 

of key primary products from holocellulose. Fig.10 shows the comparison between BioPOx 

predictions and experimental results for the decomposition of HAA in an isothermal tubular 

reactor at different temperatures: 625, 650, 675 and 700 °C [76]. These experimental results, 

which are the only available ones for the decomposition of HAA, were already used as a 

validation target by Ranzi et al. [28] using their model. Thanks to the newly developed HAA 

mechanism, BioPOx model predictions are in better agreement with the experimental results 

than those of the model of Debiagi et al. [45], but it will still need refinements when new 

experimental data are available. 
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Fig.10. HAA pyrolysis at 625 and 700°C : Comparisons between model predictions (BioPOx 

model: continuous lines, Debiagi et al. [45] dashed lines) and experimental data (points) [76].  

 

The second example of key products from holocellulose concerns LVG, the major product of 

cellulose pyrolysis. LVG pyrolysis was investigated by Fukutome et al. [77] in a tubular reactor 

at temperatures between 400 and 900 °C. Fig.11 reports the comparison between model 

prediction and experimental results which are in good agreement for LVG consumption and not 

so far for most of the observed products.  
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Table 8: Operating conditions of the tests of the model against experimental gas-phase pyrolysis and combustion studies. Simulations for 

the studies in bold are shown in the text, simulations for the other studies are shown in SM.  

N

° 
Studied 

compound 

Experimental 

study 
Process Reactor 

Temperature 

(°C) 

Pressure 

(kPa) 

Residence 

time (sec) 

Equivalence 

ratio 

Previous 

simulations 
Model* 

Biomass and its constituents 

1 Cedar wood 
Thimthong et 

al. 2015 [78] 

Pyrolysis and 

partial 

oxidation of 

volatile 

compounds 

Two-stage 

tubular 
700 and 800 / / / [78] Yes 

2 Pine wood 
Hoekstra  et al. 

2011 [79] 

Pyrolysis and 

secondary 

reactions  of 

volatile 

compounds 

Fluidized bed 

and tubular 

reactor in 

series 

500 / 

Fluidized 

bed 1.5 

sec 

/ F No 

3 Cellulose 
Norinaga et al. 

2013 [80]  

Pyrolysis and 

secondary 

reactions  of 

volatile 

compounds 

Two-stage 

tubular 

700,750 and 

800 
/ 6 / [80]  Yes 

Key compounds of biomass combustion: holocellulose 

4 HAA 
Shin et al. 2001 

[76] 
Pyrolysis Tubular 

625, 650, 

675 and 700 
/ / / [28],[45] No 

5 
Furan, MF and 

DMF 

Tran et al. 2017 

[66] 
Oxidation Tubular 397-897 100 / 

~ 0.5 ,1 and 

2 
[66] Yes 

6 
Cheng et al. 

2017 [81] 
Pyrolysis Tubular 827-1327 4 / / [81] Yes 

7 Furfural 
Zhang et al. 

2017 [82] 
Pyrolysis Tubular 100-1000 101.3 / / [82] Yes 

8 
5-

methylfurfural 

Nowakowska et 

al. 2014 [67] 

Pyrolysis 
JSR 

400-850 
106.7 2 

/ 
[67] 

Yes 

Oxidation 400-725 0.8 Yes 

9 LVG 
Fukutome et 

al. 2015 [77] 
Pyrolysis 

Two-stage 

tubular 
400-900 / 0.8-1.4 / F No 
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N° 
Studied 

compound 

Experimental 

study 
Process Reactor 

Temperature 

(°C) 

Pressure 

(kPa) 

Residence 

time (sec) 

Equivalence 

ratio 

Previous 

simulations 

Model* 

Key compounds of biomass combustion: lignin 

10 

Anisole 

Nowakowska et 

al. 2014 [68] 

Pyrolysis and 

oxidation 
JSR 400-900 106.7 2 1 [68] Yes 

11 
Zhang et al. 

2017 [82] 
Pyrolysis Tubular 100-1000 101.3 / / [82] Yes 

12 

 

Guaiacol 

Zhang et al. 

2017 [82] 
Pyrolysis Tubular 100-1000 101.3 / / [82] Yes 

13 

Nowakowska et 

al. 2014 

[67][69] 

Pyrolysis 
JSR 

250-625 
106.7 2 1 [67][69] 

Yes 

Oxidation 300-650 Yes 

14 
Asmadi et al. 

2011 [83] 

Pyrolysis 

 

Closed 

ampoule 
400–600 / 40–600 / F No 

15 Phenol 
Alzueta et al. 

2000 [84] 

Pyrolysis 
Tubular 627-1177 / 

165/T(K) 
/ 

[84] 

 

Yes 

Oxidation 115/T(K) Yes 

Key compounds for PAH formation 

16 Acetylene 
Wang et al. 

2017 [85] 
Oxidation JSR 327-827 101.3 / 

0.5, 1, 2 and 

3 
[85] Yes 

17 Ethylbenzene 
Yuan et al. 

2016 [86] 

Pyrolysis Tubular 850-1500 

4, 20 

and 

101.3 

/ / 

[86] 

Yes 

Oxidation Sphere 

726-943,726-

1105 and 

824-1125 

/ 
0.12 and 

0.15 
0.5, 1 and 1.5 Yes 

18 Benzene 
Alzueta et al. 

2000 [84] 
Oxidation Tubular 627-1177 / 

178/T(K) 

or 

187/T(K) 

/ [84,87] Yes 

19 Toluene 
Zhang et al. 

2017 [82] 
Pyrolysis Tubular 100-1000 101.3 / / [82] Yes 

* Kinetic model developed together with the experimental study.
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Fig.11. LVG pyrolysis: Comparisons between model predictions (lines) and experimental 

data [77], error bars are the standard deviations provided by the authors. 

The results shown here and in the spreadsheet in supplementary material show that, in most of 

cases, for key products from holocellulose (furan and its derivatives, furfural), the comparisons 

between pyrolysis and/or oxidation experiments and BioPOx predictions show reasonable 

agreement. 

Fig.12 presents simulations and experimental results of the pyrolysis and oxidation of anisole, 

also called methoxybenzene (CH3OC6H5), which is representative of lignin tars. The 

decomposition of this molecule, under inert and oxidative atmospheres, was studied by 

Nowakowska et al. [68] in a Jet-Stirred Reactor (JSR). As shown in Fig.12, the agreement 

between experimental points and BioPOx predictions has not been deteriorated by adding the 

parts of the BioPOx model (devolatilization model, mechanisms of the combustion of other 

volatiles species (HAA, LVG, HMFU, guaiacol…), detailed mechanism of NOx formation)  

that were not present in the original mechanism of Nowakowska et al. [68]. In contrast, a 
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slightly better agreement was found between experimental points and BioPOx predictions for 

some products, except for the formation of phenol during oxidation. 

 

Fig.12. Anisole pyrolysis and oxidation: Comparisons between model predictions (BioPOx : 

continuous lines, Nowakoswka et al. [68]: dashed lines) and experimental data (points) [68], 

error bars are the uncertainties provided by the authors.  

The difference between the predictions using both models can be partly explained by the 

presence of a guaiacol sub-mechanism in BioPOx, since guaiacol is an important product of the 

decomposition of anisole. 
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As shown in the spreadsheet of supplementary material, BioPOx can also fairly predict the 

conversion rate of anisole during pyrolysis conducted in a tubular reactor by Zhang et al. [82] 

at temperatures between 100 and 1000°C.  

Guaiacol, also called 2-methoxyphenol, is another example of key products from the lignin. 

The pyrolysis and/or the oxidation of this species used as a surrogate for lignin primary tars, 

was studied by Nowakowska et al. [67], Zhang et al. [82] and Asmadi et al. [83]. Comparisons 

between experiments and BioPOx predictions, which are in good agreement, are shown in Fig. 

13 and in the spreadsheet of supplementary material. 

 

Fig.13. Guaiacol pyrolysis and oxidation: Comparisons between model predictions (BioPOx: 

continuous lines, Nowakoswka et al. [68]: dashed lines) and experimental data (points) [67], 

error bars are the uncertainties provided by the authors. 

The pyrolysis and combustion of key compounds for PAH formation has also been studied with 

the BioPOx model. Acetylene is the lightest and one of the most important key compounds for 

PAH formation. Fig.14 reports the comparison between model predictions and experimental 

results for acetylene consumption and ethylene production during acetylene oxidation studied 

in a JSR by Wang et al. [85]. The model predictions in lean and stoichiometric conditions are 

satisfactory while acetylene degradation in rich mixture is faster than predictions.  
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Fig.14. Equivalence ratio (ɸ) effect on acetylene oxidation: Comparisons between model 

predictions (lines) and experimental data (points) [85]. Error bars correspond to an uncertainty 

of 5% as given by the authors. 

Benzene oxidation was conducted in a tubular reactor by Alzueta et al. [84] using different 

operating conditions (residence time, temperature, inlet composition). It is overall satisfyingly 
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predicted by the BioPOx model. On the same way, experiments performed by Zhang et al. [82] 

on  the pyrolysis of toluene in a tubular reactor are well predicted by the the BioPOx model. 

As a last example of those compounds, ethylbenzene pyrolysis was conducted in a tubular 

reactor by Yuan et al. [86]. For the different studied pressures, as is shown in Fig. 15, model 

predictions are in a good agreement with experimental results for ethylbenzene degradation and 

benzene formation.  

 

Fig.15. Pressure effect on ethylbenzene  pyrolysis: Comparisons between model predictions 

(lines) and experimental data (points) [86], Error bars correspond to an uncertainty of 25% as 

given by the authors. 

 

The  BioPox model has also been validated on three pyrolysis and oxidation studies of wood 

and its components, in particular, in the work of Thimthong et al. [78]. These authors carried 

out the pyrolysis of cedar wood, as well as the partial oxidation of the produced volatile 

compounds for two different temperatures (700 °C and 800 °C) in a two-stage tubular reactor. 

This reactor was modeled using a network of reactors connecting a PSR for pyrolysis to a PFR 

for oxidation, using for the CHEMKIN-PRO simulation the flowsheet shown in the spreadsheet 

in Supplementary Material. Fig.16. shows major gases (CO, CO2, H2 and CH4) yields as a 
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function of the residence time at 800 °C. Overall, an acceptable agreement is found between 

model predictions and experimental results.  

 

Fig.16. Major gases (CO, CO2, H2 and CH4) yields as a function of the residence time during 

the pyrolysis of cedar wood and the partial oxidation of the volatile compounds: Comparisons 

between model predictions (lines) and experimental data (points) [85]. 

 

The pyrolysis of cellulose has been also studied with the BioPOx model, in particular, on the 

work of Norinaga et al. [80]. They studied the pyrolysis of pure cellulose for three different 

temperatures 700 °C, 750 °C and 800 °C in a two-stage tubular reactor.  Comparaison between 

experimental results and model predictions for major gases and benzene yields as a function of 

the residence time is shown in Fig.17. 
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Fig.17. Major gases (CO, H2O, H2 ,CH4 and C2H4) and benzene yields as a function of the 

residence time during the pyrolysis of cellulose: Comparisons between model predictions 

(lines) and experimental data (points)[80]. 

 

 

Conclusion 
 

In the present work, we have developed a new kinetic model of wood combustion. To the best 

of our knowledge, this is the most detailed mechanism for biomass degradation since it 

considers in details the gas-phase reactions of the tars produced by the biomass devolatilization. 

Contrary to the existing lumped kinetic models, our model involves 710 species and includes 
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5035 reactions, amongst which 5006 gas-phase elementary reactions. This paper shows that 

BioPOx (Biomass Pyrolysis and Oxidation) model can predict results obtained for a wide range 

of experimental devices (tubular, jet stirred reactor, fluidized bed, closed ampoule…) and 

operating conditions (temperatures from 100 °C to 1327 °C, equivalence ratios from 0.5 to 3 

and pressures from 4 kPa to 106.7 kPa).  

The first part of BioPOx model consists in a semi-detailed mechanism from the literature used 

to describe biomass pyrolysis. This devolatilization mechanism was newly tested against TGA 

results obtained in parallel of this work, and against a set of 10 data from the literature. These 

comparisons show that the model is able to reproduce experimental results of TGA for wood 

and its constituents, under inert or oxidative atmosphere at low to moderate heating rates. In 

future works, this pyrolysis mechanism should be improved to better reproduce results with 

high heating rates.  

Gas-phase reactions induced by the combustion of volatile species produced by the biomass 

devolatilization are considered in the second part of the BioPOx model. A new detailed kinetic 

oxidation mechanism was proposed for hydroxyacetaldehyde which is one of the most 

important products derived from the pyrolysis of holocellulose (cellulose-hemicellulose 

association).  

The new BioPOx model was validated against experimental results for pyrolysis and 

combustion of biomass, key compounds of biomass pyrolysis, and key compounds for PAH 

formation (a set of 19 data from the literature). These comparisons show that, as a whole, the 

model predictions, match reasonably well with experimental data. Note however that, for better 

validate this model, more studies on a wider range of tars would be needed with especially a 

more comprehensive analysis of combustion products. For high temperatures and large biomass 

particles, physical phenomena such as heat and mass transfer cannot be neglected. To predict 

pollutant emissions from domestic wood combustion appliances, the kinetic model BioPOx 
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should be coupled to a thermal model which will be the purpose of a second paper. Note 

however than before being of use in CFD modelling, the present kinetic model, which includes 

710 species and 5035 reactions should be significantly reduced. 
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