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ABSTRACT 

The present work studies the influence of circularity defects, on the aerodynamic behaviour of stay 

cables of cable-stayed bridges. It focuses on wind tunnel tests on High-Density Polyethylene cable 

covers with and without helical fillets, in a range of Reynolds numbers from the sub-critical to the 

critical regime. The paper considers the impact of circularity defects on the aerodynamic stability of 

cable sheaths by testing various amplitudes of imposed ovalization. The defects are artificially applied 

on real sheaths whose original cross-sections are close to circular. The experiment consists in 

measuring surface pressures to investigate how the amplitude of ovalization influences the flow 

around the sheaths, especially in the critical Reynolds number regime when transition in the boundary 

layer occurs. The analysis is based on bifurcation diagrams and Proper Orthogonal Decomposition. 

The investigation demonstrates that important circularity defects can significantly increase the bi-

stable nature of the flow around a sheath at the critical regime. Nevertheless, the introduction of a 

helical fillet de-correlates the flow around the sheath, causing jumps in lift that have different sign 

along its length.  

1. INTRODUCTION 

 

The underlying mechanism that causes dry galloping of bridge stay cables is still under investigation 

by several research teams. Dry galloping causes significant vibrations of inclined cables under dry 

conditions, exclusively due to wind (Nikitas et al. (2015)). Field observation, numerical simulation 

and wind tunnel tests have been used to identify the parameters that affect these vibrations. Previous 

studies reported that the origin of dry galloping of stay cables is related to the flow around the cable 

sheath at the critical flow regime (Mctavish et al. (2017), Larose and Zan (2001), Cheng et al. (2003)). 

These high amplitude vibrations are serious concerns for bridge safety. Most cable sheaths used in the 

US and Europe are either smooth or feature helical fillets, while tubes with pattern-indented surfaces 

are mainly used in Asia (Kleissl and Georgakis (2012)). Katsuchi et al. (2009) investigated the 

mechanism of dry galloping in both smooth and pattern-indented surfaces. The authors reported large 

cable vibrations in models with these surfaces at different Reynolds numbers. The findings exhibited 

the importance of the cross-section and/or the surface parameters on triggering cable vibrations near 

the critical regime. Furthermore, dry galloping has been proved to occur in a critical range of 

yaw/inclination angle and at a specific reduced wind speed (Vo et al. (2016)). In wind tunnel tests, it is 
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possible to reproduce large cable vibrations at particular orientations. In general, the damping of the 

models used in such tests is low. In field observation, cable vibration amplitudes up to 1.5 m have 

been observed in Japan in windy and dry weather conditions (Matsumoto et al. (2010)). The estimated 

wind velocity was close to 18 m/s, which coincides with the beginning of the critical flow regime 

around these specific cables. In this flow regime, Karman vortex mitigation occurs and the drag crisis 

phenomenon is observed. The latter is related to the transition from laminar to turbulent flow in the 

boundary layers (Transition in Boundary Layer - Zdravkovich (1997)). The rapid drop in the drag 

coefficient is combined with the appearance of a non-negligible lift force, which is a consequence of 

the appearance of a negative pressure bubble on one side of the circular cylinder. Schewe (1983) used 

the term bi-stability to describe the occurrence of transition on either one side of a circular cylinder. 

Recent research conducted by Nikitas et al. (2012) and Benidir et al. (2014) showed that bi-stability 

causes abrupt jumps between the different regimes of the boundary layers at constant Reynolds 

number. However, as the dry galloping mechanism is referenced it has an aerodynamic origin; this 

consideration just sheds light on an important parameter, which is the macroscopic defect of the cable 

sheaths. The impact of the real circularity defect on flow around circular cylinders was investigated 

first by Flamand and Boujard (2009), then by Matteoni and Georgakis (2012). Benidir et al. (2015) 

measured the circularity defects on four smooth High-Density Polyethylene sheaths of different 

diameter. They carried out wind tunnel tests to show that this defect influences the flow around the 

sheaths, especially at the critical regime. Ma et al. (2015) asserted that the aerodynamic forces on 

cables are considerably affected by the angle of attack, especially in the critical regime. Their tests 

were carried out on smooth cable surfaces with elliptical and semi-elliptical cross-sections.  
 

The present work aims to investigate the impact of increasing the circularity defect of the cable sheath 

on the aerodynamic behaviour of stay cables by means of bifurcation diagrams and Proper Orthogonal 

Decomposition (POD). The paper also presents the comparison between the pressure patterns of 

smooth and helical fillet cable sheaths at the critical flow regime. Finally, the work investigates the 

impact of large deformations of the sheaths on the effect of the helical fillet. 

2. EXPERIMENTS 

 

2.1. Setup  

 

The 4m x 2m wind tunnel of the Scientific and Technical Centre for Building (CSTB) was used for 

full-scale measurements of surface pressures on cable models. Wind speed was varied from 0 to 28 

m/s, corresponding to a Reynolds number range between 1.03 x 105 and 4.04 x 105. Static tests were 

performed on High-Density Polyethylene (HDPE) smooth and helical fillet cable covers normal or 

inclined to the flow with a mean diameter D=250 mm. The results of the experiment on the smooth 

cables are reported in Benidir et al. (2015). A 3D surface characterization device was used to measure 

the surface roughness. The average roughness values (Ra) of the covers are 1.29m and 1.43m, 

respectively for smooth sheaths and for sheaths with helical fillet surfaces. The turbulence intensity of 

the wind tunnel was measured by a Cobra probe and was found to be less than 1.1% at the location of 

the model. The model length was L = 2 m, representing an aspect ratio of L/D = 8 % and a wind tunnel 

blockage factor of D/W= 6.2 %, where W = 4 m is the width of the wind tunnel. In addition, the 

instrumented part of the models was located far from the walls, in the middle of the working section. 

The helical fillets were 1 mm high and 3 mm wide and were inclined by 45° to the longitudinal axis of 

the cylinders. The lengthwise spacing of the helical fillet was 550 mm. Figure 1-a shows the helical 

fillet HDPE cover in the wind tunnel's test section. 
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Each sheath was equipped with 288 pressure taps distributed around 9 rings (figures 1-a and figure 1-

b) in the central part of the tube. The distance between the bottom ring (ring number 1) and the top 

ring (ring number 9) was 1 m. The distribution of the rings was not equidistant along the sheath; the 

largest separation between two successive rings was 20 cm while the smallest was 5 cm. Thus, the 

concentration of the pressure taps was higher close to the mid-section of the tube. Each pressure tap 

was connected via a short tube to a pressure sensor with a measurement range of 2500Pa. These 

sensors were collected in groups of 32 in a pressure scanner. 

 

A laser displacement sensor with a resolution of 60 μm was used to measure the original circularity 

defects of the tubes. Each tube was rotated at a steady rate around its axis and the laser sensor was 

placed normal to the surface at a suitable distance.  

 

   
  (a)           (b)                 (c) 

 

Figure 1: (a) HDPE cover with helical fillets, diameter D = 250mm; (b) 288 pressure taps (9 rings of 

32 pressure taps); (c) mechanism designed for tuning the ovalization of HDPE tube. 

 

A second set of tests was carried out in order to determine the effect of the tubes’ cross-sectional 

shape. A controlled deformation was applied on the smooth and helical fillet cable sheaths with the 

same diameter. The cross-sectional shape distortion procedure consisted of an application of a 

decompression force inside the cylinder to strain the section in one direction. The mechanism was 

composed of two metallic reinforcement bars placed inside each cylinder along its axis (figure 1-c). A 

distortion force was applied by means of five threaded shafts equally spaced along the length of the 

reinforcement bars. The resulting circularity defect of the two cylinders was controlled with a caliper. 

The mechanism was used for generating ovalization defects up to 7mm with respect to the original 

diameter. 

2.2. Measurement protocol 

The objective of the experiments was to study the impact of surface distortion for different wind 

directions. Thus, for the smooth and helical fillet cable sheaths respectively,16 and 9 wind incidences 

(i.e. angles of rotation around the longitudinal axis) were tested in the wind tunnel. The step change of 

the rotation angle was 22.5° during all the tests. Flamand and Boujard (2009), followed by Matteoni 

and Georgakis (2012) and finally Benidir et al. (2014) confirmed the importance of wind incidence in 

the critical regime when the model is a HDPE sheath with natural defects. The angle of incidence is 
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denoted by θ. For instance, when θ = 0° or θ = 22.5°, it indicates that the wind blows towards taps 1 

and 3 respectively. By referring to the DIN8074 standard, the natural circularity defect of cable 

protection used for cable-stayed bridges is assumed to be less than 1 % of the diameter. In this 

experiment, the natural defect is artificially increased up to 4.4% of the diameter.  

3. CIRCULARITY DEFECT MEASUREMENT 

The results of the circularity defect measurements for both kinds of cable surfaces are plotted in figure 

2 and figure 3. Figure 2-a shows the cross-sectional shape of the smooth sheath at ring number 5 for 

four different distortion forces. Figure 2-b plots the cross-sectional shape at all the rings for the highest 

distortion force. Similarly, figures 3-a to 3-d plot increasing imposed circularity defects for the sheath 

with helical fillet. For both types of sheath the deformation ranges from natural (labelled ‘Natural 

defect’ in figure 2-a) to 4.4% of the diameter (labelled Dmax=257). The distortion criterion is taken to 

be the amplitude of deformation along the major axis of the oval shape, called the axis of deformation. 

Three amplitudes of deformation have been achieved, equal to 253mm, 255mm and 257mm, as 

presented in figure 2-a and figure 3. As the length of the major axis increases, that of the minor axis 

decreases. For instance, when the major axis reaches Dmax=257mm the length of the minor axis is 

close to 245 mm. 

 

 

   (a)      (b) 

Figure 2: (a) Deformations of smooth cable surfaces, (b) Circularity defect variation along the length 

of the cable for Dmax=257 mm. 
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   (a) Natural defect  (b) Dmax = 253mm 

 

 
   (c)Dmax = 255mm  (d)Dmax = 257mm 

Figure3: Natural and imposed circularity defect on sheath with helical fillet. 

4. RESULTS  

The impact of the shape distortion of smooth and non-smooth surfaces on the aerodynamic behaviour 

of cable sheaths is discussed below. The interpretation of the data is detailed in two parts. The first 

part is dedicated to the variation of the mean aerodynamic load coefficients and the second part 

analyses the instantaneous drag and lift forces inferred from the pressure tap time records. 

 

4.1. Mean force coefficient 

 

Mean aerodynamic load coefficients are obtained by integrating the instantaneous pressure distribution 

at each ring. Lift and drag coefficients are defined by 

 

𝑪𝑫 =
𝑭𝑫

𝟏

𝟐
𝝆𝑼𝟐𝑺

                 (1) 
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𝑪𝑳 =
𝑭𝑳

𝟏

𝟐
𝝆𝑼𝟐𝑺

                 (2) 

where FD and FL represent the drag and lift forces respectively, ρ the air density, U the airspeed and S 

the reference surface. The reference surface (S) is obtained by multiplying the original diameter D 

(250 mm) by the reference length (L = 1 m). L corresponds also to the length of the instrumented area. 

The forces FD and FL are obtained from 

𝑭𝑫 = ∑𝑷𝒊

𝟑𝟐

𝒊=𝟏

𝒙𝒊      (3) 

𝑭𝑳 = ∑𝑷𝒊

𝟑𝟐

𝒊=𝟏

𝒚𝒊      (4) 

where xi and yi are the characteristic areas of the ith pressure tap projected in 𝑥⃗(drag direction) and 

𝑦 ⃗⃗⃗ ⃗(lift direction) respectively and Pi is the instantaneous pressure recorded at the ith tap. 

4.1.1. Sheath with helical fillet 

 

Helical fillets are installed on bridge cable sheaths in order to avoid rain-and-wind-induced vibration 

Flamand (1995). The fillet tries to force the water rivulet to follow a modified direction and aims to 

de-correlate the fluctuations of the flow along the length of the sheath. The impact of natural 

circularity defect on cable sheath aerodynamics can be studied by comparing two different wind 

incidences at an angular distance of 180° to each other. Figure 4 plots the mean lift coefficient as a 

function of Reynolds number at ring number 5. The two wind incidences are θ = 22.5° and θ = 202.5°, 

meaning that the wind blows directly towards taps 2 and 19 respectively. The cross-sectional shape 

seen by the oncoming flow is also depicted in each figure. The location of the helical fillet is identical 

for these two wind incidences, but the cable cross-sections are different due to the natural circularity 

defect. The mean lift coefficient calculated for these two cases shows a variation in the sign and the 

intensity of the lift force. In particular, the start of boundary layer transition occurs on opposite sides 

and the absolute value of the lift force measured for θ = 22.5° is 48 % greater than that obtained for θ 

= 202.5°. It is worthwhile to note that the TrBL1 regime is established at different Reynolds numbers. 

These results show that the original circularity defect influences considerably the pressure pattern 

around the covers at the critical regime, even in the presence of the helical fillet.  

 

The impact of large shape modification on the mean aerodynamic coefficients acting on the sheath is 

shown in figure 5. The variation of the mean drag and lift coefficients with Reynolds number at ring 

number 3 are given in figure 5-a and 5-b respectively. The wind is blowing directly towards pressure 

tap3 (θ = 22.5°) and the cover shape is gradually distorted. The results around the original shape are 

also plotted. The original shape means that the ovalization setup is not yet installed inside the cable 

stay. It can be observed that the redistribution of the macroscopic defect around the cable induces a 

slight increase of the mean drag force at the sub-critical regime for this orientation. The graph shows 

also that the occurrence of the drag crisis, which indicates the presence of the TrBL1 regime, is shifted 

to higher Reynolds numbers as the distortion is increased. Additionally, the drop in drag is steeper for 

the undistorted section than for the distorted ones. In the super-critical regime, the drag coefficient 

again increases with distortion. For example, at a Reynolds number of 3.36 x 105 the drag coefficient 
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is CD = 0.44 for the undistorted sheath; for the same Reynolds number but for Dmax =257mm, the 

drag coefficient jumps to CD = 0.52, which constitutes an increase of  25%.  

 

In the critical regime, the drag crisis is accompanied by a sudden jump in the mean lift coefficient as 

shown in figure 5-b. For the original cross-section, this jump appears at Re = 2.25x105, which 

corresponds to the first drop of the drag. The beginning of the second transition is associated with the 

second drop in the drag force, noted as the transition from theTrBL1 to the TrBL2 regime. When this 

transition takes place, the lift forces decrease gradually, as can be observed for a Reynolds number 

higher than  2.4 x 105. 

 

The increase and the reorganization of the circularity defect around the cover leads to a wider 

Reynolds number range in which boundary layer transition occurs. For the original section, the  

critical regime ranges from Re = 2.25x105 to Re = 2.88 x 105 while, for Dmax = 257 mm, it stretches 

from Re = 2.16 x105 to Re = 3.04 x105. Nevertheless, the maximum lift values caused by the different 

cross-sectional shape deformations at this cable orientation are quite similar. 

 
 (a) θ=22.5°     (b) θ=202.5° 

Figure 4: Mean lift coefficient vs Reynolds number, original circularity defect, ring 5. 

 
(a) Drag coefficient   (b) Lift coefficient 

Figure 5: Mean drag and lift coefficient vs. Reynolds number. θ=22.5°, Ring 3. 
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The results presented in this section show that both the original circularity defect and imposed shape 

distortion of the sheath with helical fillet can adversely impact its aerodynamic behavior. The 

Reynolds number range of the critical regime becomes wider, which means that non-zero mean lift is 

generated at a wider range of wind velocities.  In addition, for a specific cable orientation, the mean 

drag coefficient increases as the circularity defect grows. 

4.1.2. Smooth surface  

The impact of natural circularity defect on smooth cable aerodynamics has been previously reported 

by Benidir et al. (2015). This section discusses the impact of artificially increasing the macroscopic 

defect on cable aerodynamics. Figure 6 shows the variation of the mean lift coefficient as a function of 

Reynolds number. For the initial (without deformation) circularity defect, the first transition from the 

TrBL0 to the TrBL1 regime measured by most of the pressure rings along the cable occurs on the 

same side of the sheath, as illustrated in figure 6-a. However, the maximum of the lift force acting on 

each ring differs from one location to another. For instance, the discrepancy between the maximum lift 

coefficient at rings number 2 and 3 is around 50 %. Furthermore, the establishment of the single 

bubble regime occurs at the same wind velocity, which suggests the presence of a time and spatial 

correlation between the pressures captured around the rings. It should also be noted that the maximum 

lift occurs at Re=3x105 for the undeformed sheath; this Reynolds number decreases gradually to 

2.5x105 as the imposed deformation increases. 

The same conclusion can be drawn for the sheath with Dmax = 253 mm (graph 6-b), for which the 

transition occurs on the same side of the model. This result can be justified by the fact that the first 

step of imposed circularity defect was in the same order of magnitude as the initial circularity defect. 

Nevertheless, the lift forces generated from the rings at the critical regime are lower than in the case of 

the initial shape. For the second and third steps of shape distortion, a sign change occurs on the mean 

lift coefficient. An important area of the cable surface is concerned, as illustrated in figure 6-c and 6-d. 

For Dmax = 255 mm, the pressure pattern of five rings has been modified, which means that the 

transition from the TrBL0 to the TrBL1 regime takes place on the other side of the model compared to 

the case of the initial shape or Dmax = 253 mm. This change was confirmed for the largest 

deformation, where the same area of the model is prone to the same inversion of the local lift force. It 

is important to note that the wind blows towards tap 3 for all tests, i.e. θ=22.5°. As a conclusion, cable 

shape distortion can considerably affect the pressure pattern around the smooth circular cylinder 

especially in the critical regime, resulting in major changes in the mean lift coefficient. 
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(a) Initial circularity defect                 (b)Dmax = 253mm 

   

 

   (c) Dmax = 255                 (d) Dmax =257mm 

Figure 6 : Mean lift coefficient vs. Reynolds number, θ=22.5°.  

4.2. Bi-stability 

In the transitional Reynolds number range, the flow around the sheaths was often bi-stable; over a long 

time duration the flow could jump between different boundary layer transition regimes, resulting in 

abrupt jumps in the value of the lift. The mean lift coefficient plots on figures 4-6 do not contain any 

information on bi-stability, as the plotted data are time averages. Conversely, figures 7-10 plot the 
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instantaneous lift coefficient acting on the rings of the sheath with helical fillet, for increasing imposed 

deformation. The Reynolds numbers corresponding to each figure are respectively Re = 2.35 × 105, 

2.42 × 105, 2.51 × 105 and 2.51 × 105 for the non-deformed sheath, for Dmax = 253 mm, for Dmax = 

255 mm and for Dmax = 257 mm. In all cases the wind incidence is θ = 22.5°. The duration of each 

signal is 60 s; during this time, the lift on several of the rings jumps more than once between two 

values. One of the values is close to zero, i.e. the corresponding flow is nearly symmetric, while the 

other value is either positive or negative, i.e. the corresponding flow is asymmetric. The jumps are not 

always synchronized on all the rings and there are some rings where no jumps occur. Consequently, in 

this Reynolds number range, the flow can locally switch between different transition regimes (TrBL0 

to TrBL1). 

 

 
 

Figure 7: Instantaneous lift coefficient, helical fillet cable sheath, Re = 2.35x105, θ=22.5°. 

 
 

Figure 8: Instantaneous lift coefficient, helical fillet cable sheath, Dmax = 253mm, Re = 2.42x105, 

θ=22.5°. 
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Figure 9: Instantaneous lift coefficient, helical fillet cable sheath, Dmax = 255mm, Re = 2.51x105, 

θ=22.5°. 

 

 

 
 

Figure10: Instantaneous lift coefficient, helical fillet cable sheath, Dmax = 257mm, Re = 2.51x105, 

θ=22.5°. 

 

The occurrence of bi-stability was analyzed using a clustering algorithm in order to identify the total 

number of different quasi-stable states of the lift coefficient on each ring and at each Reynolds number 

(see Benidir et al. (2015)). Based on the k-means technique, the clustering algorithm partitions an N-

dimensional set of data points into k sets, called clusters. The natural partition of the data sets (cluster 

numbers) corresponds to the minimization of the Davies-Bouldin (1979) parameter as defined by 

𝐷𝐵 = 
1

𝑘
∑𝑚𝑎𝑥𝑗≠𝑖

𝑘

𝑖=1

{𝐷𝑖,𝑗}          (10) 

where Di,j is the within-to-between clusters distance for the ith and jth clusters, determined from : 

0

10

20

30

40

50

60

70

0
5

10
15

20
25

30
35

-1.5

-1

-0.5

0

0.5

1

1.5

Ring 9Ring 8Ring 7Ring 6Ring 5

Ring

Ring 4Ring 3Ring 2Ring 1

Time(s)

In
s
ta

n
ta

n
e
o
u
s
 C

L

0

20

40

60

80

100

0
5

10
15

20
25

30
35

-1.5

-1

-0.5

0

0.5

1

1.5

Ring 9Ring 8Ring 7Ring 6

Ring

Ring 5Ring 4Ring 3Ring 2Ring 1

Time(s)

In
s
ta

n
ta

n
e
o
u
s
 C

L



Journal of wind engineering & industrial aerodynamics 

 

12 

𝐷𝑖,𝑗 =
𝑑𝑖̅ + 𝑑𝑗̅

𝑑𝑖,𝑗
          (11) 

where 𝑑̅𝑖and 𝑑̅𝑗are respectively the average distance between each point and the centroid of the ith and 

jth centroid of clusters and di,j is the Euclidean distance between the centroids of the ith and jth clusters. 

More details about the k-means algorithm and cluster separation criterion can be found in MacQueen 

(1967). Plotting all the different identified clusters at each tested Reynolds number results in a 

bifurcation diagram. 

 

(a) Initial circularity defect   (b) Dmax =253mm 

 

(c) Dmax = 255mm        (d) Dmax =257mm 

Figure 11: Bifurcation diagram for helical fillet cable surface, Ring 3. 

Figures 11-a to 11-d plot the bifurcation diagrams of the instantaneous lift coefficient around ring 3 for 

the sheath with a helical fillet at wind incidence θ=22.5° and for four different imposed deformations. 

Bi-stability occurs in a wider Reynolds number range as the circularity defect increases. For the sheath 

with natural circularity defect and with Dmax = 253 mm, bi-stability occurs in the Re = 2.5 x 105-3 x 
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105 range (figures 7-a and 7-b). For the sheaths with Dmax = 255 mm and D = 257 mm, the bi-stable 

region extends from Re = 2.0 x 105 to 3.1 x 105 (figure 7-c and 7-d).  

The effect of both wind incidence and Reynolds number on the occurrence of bi-stability was 

investigated through the definition of a bi-stability percentage, defined as the number of Re values at 

which bi-stability occurred for each ring and each wind incidence, divided by the total number of Re 

values tested. The Reynolds number ranges from 1.7 x 105 to 3 x 105, including both the TrBL0-

TrBL1 and TrBL1-TrBL2 transitions. Thirteen different Re values were tested in this range. As an 

example, figure 11-a shows that bi-stability was encountered at four different Re values in the range 

1.7 x 105- 3 x 105 for ring 3 of the undeformed sheath, hence the bi-stability percentage is 30.7 % at 

this ring for θ =22.5°. Figure 11-c shows that, for Dmax = 255 mm, the bi-stability percentage 

increases to 61.5 % at the same conditions. 

 

(a) Initial circularity defect    (b) Dmax =253mm 

 

(c) Dmax = 255mm       (d) Dmax =257mm 

Figure 12: Evolution of the bi-stability when increasing the circularity defect for helical fillet cable 

sheath, D = 250mm, θ from 0° to 202.5°. 

Figure 12 presents contour plots of the bi-stability percentage, plotted against wind incidence 

(horizontal axis) and ring number (vertical axis). The wind incidence ranged from 0° to 202.5°. The 

four subplots concern different imposed deformations for the sheath with a helical fillet. For the 

undeformed sheath (figure 12-a) the highest bi-stability percentages occur at wind incidences between 
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θ = 90° and 135° and in rings 2-7. However, as the deformation is increased and the cross-sectional 

shape is distorted, the bi-stability percentage at these wind incidences is seriously reduced. The bi-

stability is gradually shifted towards incidences in the ranges 0°-22.5° and 180°-202.5°. Furthermore, 

the maximum bi-stability percentage is increased up to 90 %, which means that bi-stable phenomena 

can be observed in nearly the entire Reynolds number range between 1.7 x 105 and 3 x 105 for some of 

the rings. The rings most affected by bi-stability are rings 2-7 for all values of the imposed 

deformation; only the undeformed sheath undergoes bi-stability at ring 8. Furthermore, the length of 

the sheath affected significantly by bi-stability increases with the imposed deformation. For Dmax = 

257 mm and θ=0° this length exceeds 30 cm in total. 

4.3. Pressure distribution around the sheath with helical fillet 

The unsteady pressure distribution around the sheath with helical fillet is analyzed using Proper 

Orthogonal Decomposition (POD). This approach was already applied to a smooth sheath in Benidir et 

al.(2015); more details about it can be found in Andrianne et al. (2011) and Dowell et al. (1998). POD 

is a procedure for extracting an orthogonal basis for modal decomposition from an ensemble of 

signals. It relies on statistical processing of the signals to extract some coherence or organization. It is 

a very powerful tool in the sense that the projection on the subspace used to model the signals will 

contain the most energetic modes. 

The data recorded from the pressure taps along the tube can be arranged into a matrix P (N, M), where 

N and M represent respectively the number of pressure taps and the number of time instances, 

P =

[
 
 
 
 
P1,1 ………P1,M

………………
………………
………………

PN,1 ………PN,M]
 
 
 
 

                 (5) 

The pressure P(x, t) can be written as 

𝑃(𝑥, 𝑡) =  ∑
𝑖
(𝑥)𝑞𝑖

𝑁

𝑖=1

(𝑡)               (6) 


𝑖
(𝑥) are the spatial POD mode shapes and 𝑞𝑖(𝑡) are the generalized coordinates, which are functions 

of time. The POD procedure makes use of the eigenvalue decomposition 

𝐶 𝐴 =  𝐴            (7) 

where C is the covariance matrix of P, while A and λ are respectively the matrices of eigenvectors and 

eigenvalues of C. The energy of the POD modes was ranked using the Cumulative Percentage 

Variance (CPV) criterion. The formulation of this criterion is given by 

𝐶𝑃𝑉(𝐼) = 100 
∑ 𝑗

𝐼
𝑗=1

∑ 𝑗
𝑁
𝑗=1

 %            (8) 

where I is the number of retained modes. This criterion is applied to select the most energetic modes 

from the eigenvalues matrix.  The associated generalized coordinates are calculated from  

𝑞 =  𝜑𝑇𝑃                     (9) 
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Figures 13-16 plot the results of the POD analysis for the sheath with a helical fillet at θ=22.5° and for 

the different imposed deformations. The Reynolds number is specified below the figures. For each 

figure, subplot (a) plots CPV(I), subplot (b) plots the first three generalized coordinates and subplots 

(c)-(e) the first three POD mode shapes. Figures 13-a, 14-a, 15-a and 16-a show that the first three 

modes contain more than 97 % of the energy of the signals for all cases. 

 

 
 

(a) Energy of the mode                  (b) Generalized coordinates 

 

     
 
 (c)  Mode shape, λ1  (d) Mode shape, λ2  (e) Mode shape, λ3 

 

Figure 13: Proper Orthogonal Decomposition of the pressure pattern, helical fillet without 

deformation of the cross-sectional shape, Re = 2.35x105 
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(a) Energy of the mode    (b) Generalized coordinates 

 

    
 
 (c) Mode shape, λ1   (d) Mode shape,λ2  (e) Mode shape,λ3 

 

Figure 14 : Proper Orthogonal Decomposition of the pressure pattern, helical fillet Dmax = 253mm,  

Re = 2.42x105 

 

Mode 1 in all cases represents the mean flow, as the generalized coordinate corresponding to this 

mode is constant at all times. It can be seen that this flow is nearly but not completely symmetric for 

all imposed deformations and even for the undeformed sheath. This asymmetry of the mean flow is 

due to the presence of the helical fillet and was observed for all wind incidences and Reynolds 

numbers.  

 

Asymmetry due to turbulent transition in the boundary layers is represented by modes 2 and 3. At time 

instances when the corresponding generalized coordinates are equal to zero, the flow is equal to the 

mean flow and there is steady asymmetry due to the helical fillet. At times when the generalized 

coordinates of modes 2 and 3 are non-zero, the flow undergoes transition, becomes temporarily 

asymmetric and generates lift. Mode 2 always features an area of high pressure and an area of low 

pressure on the right side, along with a small area of high or low pressure around ring 8 on the left 

side. Mode 3 features a single area of high/low pressure on the right side, except for Dmax=257mm 

where there are two distinct areas of high pressure on the right.  
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(a) Energy of the mode       (b) Generalized coordinates 

 

    
(c)  Mode shape, λ1    (d) Mode shape, λ2         (e)    Mode shape, λ3 

 

Figure 15 : Proper orthogonal decomposition of the pressure pattern, helical fillet Dmax = 255mm,  

Re = 2.51x105 

 

Increasing the imposed deformation has a significant effect on the response of the POD modes. For the 

undeformed case, the generalized coordinates of modes 2 and 3 are equal to zero most of the time but 

jump to non-zero values over a 10-second period in the middle of the time record (see figure 13-b). In 

contrast, figures 14-b, 15-b and 16-b show that the generalized coordinate for mode 2 is nearly always 

non-zero but jumps between positive and negative values. This means that the regions of high or low 

pressure lying on the right side of the sheath change sign regularly throughout the time record. During 

some time periods rings 2-3 see low pressure while rings 5-8 see high pressure on the right side; 

during other time periods rings 2-3 see high pressure and rings 5-8 low pressure. The generalized 

coordinate of mode 3 is still mostly equal to zero but jumps to non-zero values more often when 

deformation is imposed. When this happens, rings 2-8 feature high or low-pressure bubbles on the 

right side. This means that up to 60cm of the length of the sheath can be affected by bi-stable 

phenomena when deformation is imposed.  

 

Every time the generalized coordinates of modes 2 and 3 jump in value, the lift changes magnitude 

and/or direction. Such changes constitute significant impulses applied on the sheath that will cause 

structural displacement in flexible cables. Sometimes, the changes in the flowfield are synchronized 

over the entire instrumented length of the sheath, causing a uniform lift to the left or to the right. 

Consider the case Dmax=255mm plotted in figure 15. At times when the generalized coordinates of 

both modes 2 and 3 are positive, there is a uniform high-pressure area over most of the right side of 
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the sheath (rings 3-5), which cancels the low pressure caused by mode 1. A net lift towards the left 

will be applied on the majority of the sheath, causing a significant impulse when the jump occurs. 

Nevertheless, figures 13-16 show that, for the sheath with a helical fillet, synchronized changes in the 

flow field that cause a net lift towards the same direction over the entire length of the sheath are rare. 

In most time instances, the generalized coordinates of modes 2 and 3 have incompatible signs or one 

of them is zero. In such cases, the lift pushes half of the sheath towards the left and the other half 

towards the right (or vice-versa). This means that, when jumps occur, the resulting impulse acting on 

the sheath is weaker and the associated structural response is expected to be less pronounced. 

 

 
 

 (a) Energy of the mode   (b) Generalized coordinates 

 

 
 

(c)  Mode shape, λ1    (d) Mode shape, λ2         (e)    Mode shape, λ3 

 

Figure 16 : Proper orthogonal decomposition of the pressure pattern, helical fillet Dmax = 257mm, 

 Re = 2.51x105 

 

For the case D=257mm in particular (figure 16), the generalized coordinate of mode 3 is zero almost 

exclusively when that of mode 2 is not equal to zero. Therefore, there are no time instances when 

modes 2 and 3 cause a uniform low or high-pressure bubble over the entire length of the sheath. The 

energy of mode 1 is lower than in the other deformation cases and that of mode 2 is higher, which 

means that bi-stability is more important. Yet, jumps in the values of the generalized coordinates are 

less frequent and result in non-uniform changes in pressure along the length of the sheath. Hence, the 

effect of bi-stability is expected to be less pronounced on the structural response of the cable. 
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5. CONCLUSION 

 
This paper reports on the effect of increasing the circularity defect on the sheaths of cables for cable-

stayed bridges. For smooth sheaths, imposing deformation on their cross-section shifts the critical 

regime to lower Reynolds numbers. For sheaths with helical fillets, the critical Reynolds number range 

becomes wider. Important bi-stable phenomena are observed for both types of sheath in the critical 

regime, causing significant jumps in instantaneous lift.  

 

Imposed deformation has a mixed effect on the aerodynamic stability of the flow around the sheath 

with helical fillet. On the one hand it increases the Reynolds number range of the critical regime and 

makes bi-stable phenomena more pronounced. On the other hand, the helical fillet de-correlates the 

flow, resulting in regions of opposite pressure on the same side of the sheath, even at the highest 

imposed deformation. This means that jumps in lift are rarely uniform over the entire length of the 

sheath and any resulting impulses will not have a coherent effect on the structural response of the 

enclosed cable. This result could be taken to mean that the introduction of a helical fillet has a positive 

effect on dry galloping stability, as well as on rain-and-wind-induced vibration. Nevertheless, it should 

be kept in mind that the present experiments were carried out on sheaths of length 2m and flow 

correlation phenomena might be different for much longer sheaths.  

 
REFERENCES 

[1] Nikitas N., Macdonald, J. H. G. 2015. Aerodynamic forcing characteristics of dry cable galloping 

at critical Reynolds numbers. European Journal of Mechanics B/Fluids. Vol 49, pp. 243–249. 
 

[2] Mctavish S., Yamauchi K. and Sato H. 2017. An investigation of large-amplitude cable vibrations 

at critical and supercritical Reynolds numbers. International Symposium on the Dynamics and 

Aerodynamics of Cables (ISDAC).Oct, 30-31, FEUP, Porto, Portugal. 

 

[3] Larose, G.L. and Zan, S.J. 2001. The aerodynamic forces on the stay cables of cable-stayed bridges 

in the critical Reynolds number range. Proceedings of the Fourth International Symposium on Cable 

Dynamics., (77-84),Montreal, Canada. 

 

[4] Cheng, S., Irwin, P.A., Jakobsen, J. B., Lankin, J., Larose, G. L., Savage, M. G., Tanaka,H.  and 

Zurell, C. 2003. Divergent motion of cable exposed to skewed wind. Proceedings of the 5th 

International Symposium on Cable Dynamics, (271-278), Santa Margherita, Italy. 

 

[5] Kleissl, K. and Georgakis, C. T. 2012. Comparison of several innovative bridge cable surface 

modifications. The Seventh International Colloquium on Bluff Body Aerodynamics and Applications 

(BBAA7) Shanghai, China; September 2‐6. 

 

[6] Katsuchi, H. and Yamada, H. 2009. Wind-tunnel Study on Dry-galloping of Indented-surface Stay 

Cable. The 11th Americas conference on wind engineering. San Juan, Puerto Rico. June 22-26. 

 

[7] Vo H-D, Katsuchi H, Yamada H and Nishio M, 2016. A wind tunnel study on control methods for 

cable dry-galloping. Journal of Frontiers of Structural and Civil Engineering. Vol. 10(1), pp, 72-80. 

 



Journal of wind engineering & industrial aerodynamics 

 

20 

[8] Matsumoto M, Yagi T, Hatsuda H, Shima T, Tanaka M, Naito H. 2010. Dry galloping 

characteristics and its mechanism of inclined/yawed cables. Journal of Wind Engineering and 

Industrial Aerodynamics, 98 (6–7), pp, 317–327. 

[9] Zdravkovich, M. M., 1997. Flow around circular cylinder - Volume 1: Fundamentals, pages 163-

198, Oxford University Press. 

 

[10] Schewe, G., 1983. On the force fluctuations acting on a circular cylinder in cross flow from 

subcritical up to trans-critical Reynolds numbers. Journal of fluid Mechanics, Cambridge University 

Press, August-1983, 133, pp. 265-285. 

 

[11] Nikitas, N., Macdonald, J. H. G., Jakobsen, J. B., and Andersen, T. L. 2012. Critical Reynolds 

number and galloping instabilities : experiments on circular cylinders. Experiments in Fluids., 52, 

Issue5,(1295-1306). 

 

[12] Benidir, A., Flamand, O., Gaillet, L., Dimitriadis, G. 2014. Impact of circularity defect on helical 

fillets HDPE bridge stay covers: Analysis of bi-stability at critical Reynolds number by bifurcation 

diagrams. The 1st  Symposium on the Dynamics and Aerodynamics of Cables (SDAC) - Sept. 25-26,  

DTU, Copenhagen, Denmark. 

 

[13] Flamand, O., Boujard, O., 2009. A comparison between dry cylinder and rain-wind induced 

excitation,  Proceedings of the 5th European and African,  Florence, Italy. 

[14] Matteoni, G., Georgakis, C. T., 2012. Effects of bridge cable surface roughness and cross-

sectionaldistortion on aerodynamic force coefficients. Journal of Wind Engineering and 

IndustrialAerodynamics, 104-106, pp. 176-187. 

 

[15] Benidir, A., Flamand, O., Gaillet, L., Dimitriadis, G., 2015, Impact of roughness and circularity 

defect on bridge cables stability. Journal of Wind Engineering and Industrial Aerodynamics, Feb. 

2015, 137, pp, 1-13. 

 

[16] Ma, W.Y., Liu, Q. K., Du, X.Q. and Wei, Y.Y., 2015. Effect of the Reynolds number on the 

aerodynamic forces and galloping instability of a cylinder with semi-elliptical cross sections. Journal 

of Wind Engineering and Industrial Aerodynamics, Volume 146, Nov. 2015, pp, 71-80. 

[17] Flamand, O., 1995. Rain wind induced vibration of cables. Journal of Wind Engineering and 

Industrial Aerodynamics, July. 1995, Volume 57, Issue 2-3, pp, 353-362. 

 

[18] Andrianne, T., Abdul Razak, N. and Dimitriadis, G., 2011. Flow Visualization and Proper 

Orthogonal Decomposition of Aeroelastic Phenomena, in Wind Tunnels, edited by Satory Okamato, 

ISBN 978-953-307-295-1,  InTech. 

 

[19] Dowell, E. H., Hall, K. C. and Romanowski, M. C., 1998. Eigen mode analysis in unsteady 

aerodynamics: Reduced order models, Applied Mechanics Reviews 50(6): 371–385. 

 

[20] Davies, D. L., Bouldin, D. W., 1979. A cluster separation measure, IEEE transaction on 

patternanalysis and machine intelligence.Volume 1, Issue 2,Pages 224-227. 

 

[21] MacQueen, J.B., 1967. Some methods for classification and analysis of multivariate observations. 

In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, pp. 



Journal of wind engineering & industrial aerodynamics 

 

21 

281–297. University of California Press, University of California, USA, June 21–July18, 1965 and 

December 27, 1965–January 7, 1966, pp. 281–297. 

 

 

 
 


