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ABSTRACT 

Semivolatile organic compounds (SVOCs) in indoor environments can partition into the gas phase, 

airborne particles, and settled dust and onto available surfaces. A long-term dynamic model was 

developed to predict the hourly concentrations of SVOCs over a year in the gas phase, airborne 

particles, and settled dust and on each sink surface. The model takes into account mass transfer 

mechanisms, the reactivity of SVOCs with oxidants indoors, and the influence of four indoor 

environmental factors (the air temperature, relative humidity, concentration of indoor airborne 

particles, and air exchange rate) on the mass transfer parameters. The model was validated for 

DEHP (di-2-ethylhexyl phthalate) and BBzP (butyl benzyl phthalate) by comparing the predicted 

concentrations in all the phases with the measured concentrations obtained in an environmental 

chamber and a test house. The model was then used to predict the hourly averaged concentration 

of BBzP in all the phases under real environmental conditions over a year. More than 52% of the 

variance in the BBzP concentration was found to be associated with the covariance of the 

environmental factors. The air exchange rate contributed to 16% of the variance in the 

concentration. In addition, the indoor air temperature and relative humidity contributed 9% of the 

variance in the gas-phase concentration of BBzP and 7% of the variance in the settled dust 

concentration of BBzP. The variance in the concentration of the total suspended particles 

contributed 10% of the variance in the BBzP concentration on the walls and windows. 
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1. INTRODUCTION 

Semivolatile organic compounds (SVOCs), such as phthalates, flame retardants, pesticides, and 

polycyclic aromatic hydrocarbons, may originate from both indoor and outdoor sources and 

partition in indoor environments among the gas phase, airborne particles, settled dust, and 

available surfaces [1]. Consequently, occupants can be exposed indoors to SVOCs through 

multiple pathways such as inhalation [2], dermal uptake [3], and ingestion of settled dust [4]. To 

evaluate the health risk associated with indoor exposure to SVOCs, the SVOC concentrations need 

to be either measured in all the phases or estimated by modeling.  

Several studies have been carried out to address the mass transfer mechanism of SVOCs in indoor 

environments [5–8], and fugacity-based models have been developed to predict indoor SVOC 

concentrations [9–11]. The first dynamic model was developed to predict the emission of 

phthalates from a piece of vinyl flooring into the gas phase and the mass transfer of phthalates 

between the gas phase and airborne particles in a single room [12]. The phthalate concentrations 

in both the gas phase and airborne particles were predicted. The settled dust and several sink 

surfaces, e.g., window and human skin, were then added to the model, and the model was extended 

from a single room to two adjacent rooms [13]. The SVOC concentrations in the gas phase, 

airborne particles, settled dust, and on each sink surface were predicted. Later, the model was 

improved by considering the deposition of airborne particles, the resuspension of settled dust 

[14,15], and the reactivity of SVOCs with hydroxyl radicals, nitrate radicals, and ozone [16]. For 

the prediction of SVOC concentrations for a large dataset of buildings, a probabilistic approach 

based on Monte Carlo simulation was developed to predict the distribution of the SVOC 

concentrations under equilibrium conditions [17].  



 

4 

 

Environmental factors, e.g., indoor air temperature, relative humidity, the concentration of 

airborne particles, and the air exchange rate, have a significant influence on mass transfer 

parameters such as mass transfer coefficients and partition coefficients [18]. To use modeling 

approaches with real environmental conditions, the impact of the environmental factors on the 

mass transfer parameters needs to be integrated into the equations of the models and quantified at 

each time step of the calculation.  

Therefore, the objective of this study is to develop a dynamic model to predict the concentration 

of SVOCs in real indoor environments over long periods. To reach this objective, three aspects 

should be considered while developing a model: (1) the model should include the emission of 

SVOCs from multiple surface sources and the sorption of SVOCs onto multiple sink materials; (2) 

the model should include the mass transfer mechanisms of SVOCs, the deposition and 

resuspension of particles, and the reactivity of SVOCs; and (3) the model should address the impact 

of environmental factors on the mass transfer parameters and concentrations of SVOCs at each 

time step of the calculation. 

 

2. MATERIAL AND METHODS 

2.1. Development of the model 

To predict SVOC concentrations in indoor environments, the following mechanisms were 

considered in the model (Fig. 1): (1) the continuous emission of SVOCs from indoor surfaces to 

the gas phase; (2) the mass transfer of SVOCs among the gas phase, airborne particles, settled dust, 

and sink surfaces; (3) the transport of SVOCs between indoor and outdoor environments in the gas 
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phase, airborne particles, and settled dust; (4) the gas- and particle-phase reaction of SVOCs with 

oxidants indoors; and (5) the deposition of airborne particles onto floor dust and other surfaces 

(e.g., furniture) and the resuspension of the dust into the air. To fully address the mass transfer 

processes of SVOCs in a room for a robust prediction of SVOC concentrations, the model is 

currently based on a single-room environment, and it will be extended to a multiroom environment 

in the future. 

 

 

Fig. 1. Schematic of the model. 

 

The model assumes that (1) the indoor air is well mixed; (2) the SVOC mass transfer efficiency 

between indoor and outdoor environments equals one; (3) SVOC indoor sources are surfaces (e.g., 

building materials and coatings, decoration products, furniture, and office equipment) that emit 

continuously and infinitely on the time scale of the prediction; and (4) SVOC indoor sink materials 

SVOC emission 

from sources

SVOC sorption 

onto sink surfaces

SVOC partition between gas 

and particle phases

SVOC partition 

between gas phase 

and settled dust

Particle deposition

Dust resuspension

Air entry

Air removal
Chemical reaction

Dust removal

Dust entry



 

6 

 

are impermeable. Thus SVOCs are absorbed on the surface of the materials. The gas-phase 

concentration of a compound is described by 

d𝐶g

d𝑡
𝑉a = ∑ ℎme,𝑖𝐴e,𝑖(𝑦0,𝑖 − 𝐶g)

𝑖
− ℎmp𝐴p (𝐶g −

𝐶p

𝑇𝑆𝑃 × 𝐾p
) − ℎmd𝐴d (𝐶g −

𝐶d

𝐾d
)

− ∑ ℎms,𝑗𝐴s,𝑗 (𝐶g −
𝐶s,𝑗

𝐾s,𝑗
)

𝑗
+ 𝑄(𝐶gin − 𝐶g) − ∑ 𝑘1g,𝑥𝐶g𝑉a

𝑥
 

(1) 

where Cg (µg/m3), Cp (µg/m3), Cd (µg/g), and Cs (µg/m2) are the concentrations of the compound 

in the gas-phase, airborne particles, settled dust on the floor, and sink surfaces in the room, 

respectively; t (h) is time, Va (m
3) is the volume of the room; hme, hmp, hmd, and hms (m/h) are the 

mass transfer coefficients in the boundary layer of the source surfaces, airborne particles, settled 

dust, and sink surfaces, respectively; Ae, Ap, Ad, and As (m
2) are the areas of the source surfaces, 

airborne particles, settled dust on the floor, and sink surfaces, respectively; y0 (µg/m3) is the gas-

phase concentration adjacent to the source surface; and TSP (µg/m3) is the concentration of the 

total suspended particles in indoor air. TSP is related to indoor/outdoor particle transport, particle 

dynamics indoors, and indoor particle emission. Indoor particle emission is influenced by human 

activities such as cooking and cleaning. No model can fully address the indoor particle 

concentration unless a scenario is defined with scheduled activity of particle sources and changes in 

window openings. Therefore, instead of calculating the indoor particle concentration using a 

particle mass balance equation under a particular activity scenario, the current model requires the 

indoor particle concentration as an input. This input can be constant or time dependent and can be 

measured or predicted from other particle transport models. Kp (m
3/µg), Kd (m

3/g), and Ks (m) are 

the particle/gas, dust/gas, and sink/gas partition coefficients, respectively; Cgin (µg/m3) is the 

outdoor gas-phase concentration of the compound with a transfer efficiency assumed to be equal 
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to one; Q (m3/h) is the air flow rate; and k1g (h
-1) is the pseudo-first-order reaction rate constant in 

the gas phase. The model refers to the emission of SVOCs from multiple sources, the sorption of 

SVOCs onto multiple sink surfaces, and the reaction of SVOCs with multiple oxidants. The 

subscripts, i, j, and x, represent the multiple sources, sinks, and oxidants (e.g., hydroxyl radicals, 

nitrate radicals, and ozone). Eq. (1) considers the continuous emission of a compound from source 

surfaces, while the emission from intermittent sources is not considered in the current model. The 

sink surfaces are assumed to be impermeable [6,19]. Therefore, SVOCs can form an organic film 

on the sink surface, and the diffusion of SVOCs through the material is neglected. Some recent 

studies have observed the mass transfer of SVOCs between source materials and settled dust in 

direct contact [20,21]. However, this process is not taken into account in the current model. 

The average SVOC concentration in the airborne particles of all sizes is described by 

d𝐶p

d𝑡
𝑉a = ℎmp𝐴p (𝐶g −

𝐶p

𝑇𝑆𝑃 × 𝐾p
) − 𝐶p𝑣dep(𝐴ddep + ∑ 𝐴sdep,𝑗

𝑗
) + 𝑅sus(𝐶d𝜌d𝑉dsus

+ ∑ 𝐶d,𝑗𝐴ssus,𝑗
𝑗

) + 𝑄(𝐶pin − 𝐶p) − ∑ 𝑘1p,𝑥𝐶p𝑉a
𝑥

 

(2) 

where vdep (m/h) is the deposition velocity of airborne particles of all sizes; Addep and Asdep (m
2) are 

the deposition areas of the floor dust and other surfaces; and Rsus (h
-1) is the resuspension rate of 

the deposited particles of all sizes. vdep is associated with the type of surface and particle size 

distribution. However, there is insufficient information in the literature addressing the size-

dependent particle deposition velocity for each type of indoor surface. Therefore, the current model 

uses an identical value for all surfaces for practical reasons. To include particle size effects in the 

model, the size distribution of indoor airborne particles and its changes over time need to be 

defined. Studies on the daily change of the indoor particle size distribution are rare. Therefore, the 
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current model focuses on indoor PM10 for simplicity. The vdep (1.1 m/h) and Rsus (2.4×10-5 h-1) 

values were retrieved from the literature [14,15]. The present model separates the floor dust from 

dust settled on other surfaces. Due to the large number of indoor surfaces, it is not feasible to model 

the dust concentration of SVOCs on each surface. In a normally cleaned room, a very thin layer of dust 

may exist on a surface. The dust concentration is associated with the surface concentration of SVOCs. 

Therefore, the present model assumes that the dust concentration on a sink surface (Cd,j) is equal to the 

surface concentration (Cs,j) for simplicity. ρd (g/m3) is the density of the settled dust, and Vdsus (m
3) 

is the volume of the floor dust that may resuspend. Dust mass loading is assumed to be constant. 

Assus (m
2) is the area of the other surfaces where deposited particles may resuspend. Since deposited 

particles on a surface can also resuspend, Assus,j is assumed to be equal to Asdep,j. Cpin (µg/m3) is the 

outdoor particle-phase concentration of the compound with a transfer efficiency assumed to be 

equal to one, and k1p (h
-1) is the pseudo-first-order reaction rate constant of the compound in the 

particle phase.  

The average SVOC concentration in the floor settled dust of all sizes without taking into account 

possible SVOC mass transfer between the source flooring and dust in direct contact is described 

by 

d𝐶d

d𝑡
𝜌d𝑉d = ℎmd𝐴d (𝐶g −

𝐶d

𝐾d
) + 𝐶p𝑣dep𝐴ddep − 𝑅sus𝐶d𝜌d𝑉dsus − ∑ 𝑘1d,𝑥𝐶d𝜌d𝑉d

𝑥

+ 𝑞din𝜌din𝐶din − 𝑞dout𝜌d𝐶d 

(3) 

where k1d (h
-1) is the pseudo-first-order reaction rate constant in the settled dust; Vd (m

3) is the 

volume of the floor dust; qdin and qdout (m
3/h) are the flow rates of the dust entering and leaving the 

room, respectively; ρdin (g/m3) is the density of the dust entering the room; and Cdin (µg/g) is the 

concentration of the compound in the dust coming from outdoors. Due to the difficulty in assessing 
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it, the transport of settled dust between the indoor and outdoor environments was not considered 

in the present study. Therefore, the flow rates (qdin and qdout) were assumed to be equal to zero, and 

the volume of the floor dust was assumed to be constant.  

The concentration of the compound on a sink surface is described by 

d𝐶s,𝑗

d𝑡
𝐴s,𝑗 = ℎms,𝑗𝐴s,𝑗 (𝐶g −

𝐶s,𝑗

𝐾s,𝑗
) + 𝐶p𝑣dep𝐴sdep,𝑗 − 𝑅sus𝐶s,𝑗𝐴ssus,𝑗 − ∑ 𝑘1s,𝑥𝐶s,𝑗𝐴s,𝑗

𝑥
 (4) 

where k1s (h
-1) is the pseudo-first-order reaction rate constant on the surface. 

The mass transfer parameters in the model were retrieved from measured values in the literature 

or estimated using equations developed in previous studies. Direct measurements of y0 for 

phthalates have been carried out for various floorings [8,22] and mattresses [23]. For phosphorous 

and brominated flame retardants, the concentrations in indoor air were measured when computers 

and televisions were present in the room [24,25]. Information on SVOC emissions from other 

indoor sources is not available in the literature. The mass transfer coefficients [26,27], partition 

coefficients [6,28] and reaction rate constants [16] can be calculated using methods developed in 

previous studies. 

Eqs. (1 - 4) can be transferred into a system of m (m = j + 3) linear equations using the finite 

difference method. To ensure the stability and convergence of the solution, the backward 

difference method was used in the model.  

𝐀𝐱 =  𝐛 (5) 

where A is an m × m matrix, x is a column vector with m concentrations (Cg, Cp, Cd, and Cs for 

each of the j surfaces) and b is a column vector with m entries.  
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𝐀 =

[
 
 
 
 
 
𝑎11 𝑎12 𝑎13 𝑎14 ⋯ 𝑎1𝑚

𝑎21 𝑎22 𝑎23 𝑎24 ⋯ 𝑎2𝑚

𝑎31 𝑎32 𝑎33 𝑎34 ⋯ 𝑎3𝑚

𝑎41 𝑎42 𝑎43 𝑎44 ⋯ 𝑎4𝑚

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 𝑎𝑚4 ⋯ 𝑎𝑚𝑚]

 
 
 
 
 

, 𝐱 =

[
 
 
 
 
 
 
𝐶g

𝐶p

𝐶d

𝐶s,1

⋮
𝐶s,𝑗]

 
 
 
 
 
 

, 𝐛 =

[
 
 
 
 
 
𝑏1

𝑏2

𝑏3

𝑏4

⋮
𝑏m]

 
 
 
 
 

  

The entries in matrix A and vector b are functions of (1) the geometry and air flow rate of the 

room, (2) the mass transfer parameters, (3) the surface of the source/sink materials, (4) the 

concentration of the total suspended particles, and (5) the density of settled dust. Detailed 

information on the entries of the matrix A and vector b is provided in the supporting information 

(SI). The values of model parameters are provided in Table S1 in the SI. 

The indoor temperature (T), relative humidity (RH), air exchange rate (AER), and airborne particle 

concentration (TSP) can influence the mass transfer parameters and concentrations of SVOCs (Fig. 

2). The impacts of the four environmental factors are not negligible and have been quantitatively 

addressed elsewhere [18]. The impacts of T, RH, AER, and TSP were addressed quantitatively in 

the calculation of the mass transfer parameters in the model, e.g., y0, mass transfer coefficients, 

and partition coefficients, using equations presented in the literature [18]. For each time step, the 

environmental factors were assumed to affect the mass transfer parameters without delay. 

The model was coded in C# language using Visual Studio 2015 (Microsoft Visual Studio 

Community 2015, version 14.0, 2016 Microsoft Corporation). A user-friendly interface was 

designed for nonprofessionals for the modeling of indoor SVOC concentrations (Fig. S1 in the SI). 

The total calculation time was set to 365 days to address concentrations over a long period that 

included all the seasons. The time step was set to 1 h by default and should not be reduced, because 

the environmental factors were assumed to affect the mass transfer parameters immediately. For 
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example, the temperature on the source surface changes with the air temperature at each time step 

and affects the emission without delay. These values can be changed to adapt to special needs. The 

input data to initiate the calculation of the model include (1) the geometry and air flow rate of the 

room, (2) the size of the source/sink materials, (3) the initial concentration of SVOCs in the room, 

and (4) the outdoor SVOC concentrations and indoor TSP concentration over the whole calculation 

period, when needed. The values of T, RH, AER, TSP, Cgin, Cpin, and Cdin are the input data at each 

time step. Cgin, Cpin, and Cdin are set to zero by default and are modifiable. The other parameters in 

the model, e.g., the partition coefficients, the mass transfer coefficients, and y0, were calculated 

under the environmental conditions of the time step. Then, the entries in matrix A and vector b 

were calculated using the updated parameters. Finally, the updated system of linear equations was 

solved using Gaussian elimination to calculate the values of Cg, Cp, Cd, and Cs at the time step. 
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Fig. 2. Influence of environmental factors on the transport of SVOCs. 

 

2.2. Validation of the model 

Three predictions were performed to validate the model and to perform long-term dynamic 

predictions under real environmental conditions. 

First, a validation of the model was carried out for di-2-ethylhexyl phthalate (DEHP) in a 2-L 

sandwich-like environmental chamber [22]. DEHP was emitted from a piece of vinyl flooring 

inside the chamber without the presence of airborne particles or settled dust. DEHP was measured 

in the chamber gas phase and was also absorbed on the surface of the chamber. All the 

environmental conditions remained constant during the duration of the experiment. The parameters 

for the model prediction (geometric parameters of the environmental chamber and the source 

material, source emission parameters, mass transfer coefficients, and partition coefficients) were 

retrieved from the measurement study [22], and the predicted hourly average concentrations were 

compared with the measured values. 

Second, a validation of the model was performed for butyl benzyl phthalate (BBzP) measured in 

a 250-m3 test house [29]. BBzP was emitted from the flooring of the test house. BBzP was 

measured in both the gas and airborne particles in the indoor air, settled dust, and on the walls 

(measured on wooden surfaces representing walls, ceilings and furniture) and windows of the 

house. The environmental factors (T, RH, and AER) were changed 4 times over a period of less 

than 200 days in total. The TSP remained constant (4.0 ± 3.8 µg/m3) over the period of study. The 

parameters for the model prediction (geometric parameters of the test house and the source 
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material, source emission parameters, mass transfer coefficients, partition coefficients, and 

environmental parameters of the test house) were retrieved from a measurement study [29], and 

the predicted hourly average concentrations were compared with the measured values. 

2.3 Application of the model: a case study 

The model was used to predict the BBzP concentrations under real indoor environmental 

conditions. Indoor temperature, RH, AER, and PM10 concentration were measured over a year 

(January 1–December 31, 2014) during a French study in a mechanically ventilated office [30,31] 

and used in the test house experiment. The hourly average values of the environmental parameters 

in the office were the entry data for the model (Figs. S2–S5 in the SI). The PM10 concentration 

was used as the estimate of TSP. The hourly average AER was estimated from CO2 monitoring 

during the decay periods according to the method developed by Ramalho et al. [32]. The other 

geometry and material emission parameters were those from the abovementioned test house. The 

hourly average concentrations of BBzP over a year were predicted considering two cases. For the 

first case, the initial BBzP concentrations in all the phases were assumed to be zero. This case 

corresponded to the prediction in a newly built room. The dynamic concentrations were calculated 

when the hourly average values of the environmental factors were used. In addition, the steady-

state concentrations were calculated with the yearly-average values of the environmental factors. 

For the second case, the initial BBzP concentration in all the phases was assumed to have reached 

the steady state that had been determined during the calculation of the first case. This case 

corresponded to a prediction in an existing room, and the hourly average concentrations were 

calculated for a period of a year. The contribution of each environmental factor to the variance in 

the BBzP concentration in each phase was estimated using the following equation. 
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Var(𝐶𝑚)|Total = Var(𝐶𝑚)|Var(𝑇) + Var(𝐶𝑚)|Var(𝑅𝐻) + Var(𝐶𝑚)|Var(𝑃𝑀10)

+ Var(𝐶𝑚)|Var(𝐴𝐸𝑅) ± Var(𝐶𝑚)|Cov(𝑇,𝑅𝐻,𝑃𝑀10,𝐴𝐸𝑅) 

(6) 

where Var(𝐶𝑚)|Var(𝑇,𝑅𝐻,𝑃𝑀10,𝐴𝐸𝑅)  is the variance in the SVOC concentration (phase m); 

Var(𝐶𝑚)|Var(𝑇), Var(𝐶𝑚)|Var(𝑅𝐻), Var(𝐶𝑚)|Var(𝑃𝑀10), and Var(𝐶𝑚)|Var(𝐴𝐸𝑅) are the variances in 

the SVOC concentration (phase m) due to the variance in the T, RH, PM10 concentration, and AER, 

respectively; and Var(𝐶𝑚)|Cov(𝑇,𝑅𝐻,𝑃𝑀10,𝐴𝐸𝑅) is the variance in the SVOC concentration (phase m) 

due to the covariance of all four environmental factors. 

 

3. RESULTS AND DISCUSSION 

3.1. Validation of the model 

The predicted DEHP concentrations in both the gas phase and on the surface of the sandwich-like 

chamber were compared with the measured values (Fig. 3). Since the environmental factors 

remained constant, the DEHP concentrations (Cg and Cs) increased until they reached their steady-

state values. Student’s t-tests were performed to test the significance of the difference between the 

measured and predicted Cg and Cs values. The p-values (0.65 for Cg and 0.32 for Cs) are both 

higher than 0.05, which indicates that the differences between the measured and predicted 

concentrations are not significant. 

The predicted BBzP concentrations in the test house were compared with the measured values. 

The profile of the concentrations in the air (the sum of Cg and Cp) and the average concentrations 

over the measurement period in the settled dust, on the walls (on wooden surfaces, representing 

walls, ceilings and furniture), and on the windows are shown in Fig. 4. Since the environmental 
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factors were changed only 4 times over a period of less than 200 days, the concentrations in the 

air could reach the steady state between two changes of the environmental factors. The p-value of 

the Student’s t-test of the measured and predicted concentrations of BBzP in air is 0.62, suggesting 

that the differences between the measured and predicted values are not significant. 

 

(a) 

 

(b) 

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

C
g

o
f 

D
E

H
P

 (
µ

g
/m

3
)

Time (days)

Measurement

Model



 

16 

 

 

Fig. 3. Hourly average concentration of DEHP in the sandwich-like chamber (a) in the gas phase 

(Cg) and (b) on the surface (Cs) of the chamber. Measured data from [22]. 
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Fig. 4. BBzP concentrations in the test house (a) in the air (Cg + Cp) and (b) in the settled dust, 

on the walls, and on the windows. Measured data from [29]. 

 

The comparisons of the environmental chamber and the test house results suggest that the model 

can provide robust estimates of the concentrations of the two phthalates in under both constant and 

dynamic environmental conditions. The pseudo-first-order reaction rate constants of DEHP and 

BBzP are much lower than the AER (25 h-1 in the environmental chamber, and between 0.5 and 

0.71 h-1 in the test house), e.g., for the reaction with the hydroxyl radical in the gas phase, the k1g 

is between 5.1×10-3 and 1.4×10-1 h-1 for DEHP and between 2.6×10-3 and 7.2×10-2 h-1 for BBzP) 

[16]. Therefore, the reactivity of the two phthalates does not have significant influence on their 

concentrations indoors. According to a detailed study of SVOC reactivity, reactivity plays an 

important role in the fate of indoor SVOCs for a number of polycyclic aromatic hydrocarbons 

(PAHs) and pesticides, such as benzo[a]anthracene, chrysene, benzo[b]fluoranthene, pyrene, 

diazinon, chlorpyrifos, and aldrin [16].  

Over a period of less than 200 days in the test house, the indoor air temperature (between 21 and 

30 °C) and RH (between 24.9% and 40.4%) were changed four times. The AER (between 0.5 and 

0.71 h-1) was changed 3 times. The experimental pattern of the variation in T, RH, TSP, and AER 

in this study cannot represent real environmental conditions, which have rapider changes. To 

validate the model in an ordinary room over a long period of time, future studies should measure 

SVOC concentrations in the gas phase, airborne particles, and settled dust and on indoor surfaces 

regularly. During the measurement period, indoor environmental factors should be monitored.  
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3.2. Dynamic modeling over a year 

The hourly average concentrations of BBzP under the real environmental conditions of the French 

office study and considering the case of a newly built room are shown in Figs. 5 and 6. The 

modeled concentration profiles considering an existing room are shown in Figs. S6 and S7 in the 

SI. The distribution of the BBzP concentrations over a year is shown in Table 1. Due to the 

variation in the environmental factors, the concentrations of BBzP in all the phases vary by 

approximately one order of magnitude over a year. In the existing room, the BBzP concentrations 

vary between 4 and 1.2 × 103 ng/m3 for Cg, between 7.8 × 10-4 and 3.1 × 101 ng/m3 for Cp, between 

3 and 7.1 × 102 µg/g for Cd, between 5.7 × 10-4 and 2.7 × 101 µg/m2 for Cs on the walls, and 

between 5.7 × 10-4 and 2.6 × 101 µg/m2 for Cs on the windows. Student’s t-tests were performed 

to test the significance of the difference between the concentrations over the period of the 

predictions due to the difference in the initial concentrations. The p-values for Cg (0.51), Cp (0.75), 

and Cd (0.46) are higher than 0.05, indicating that the initial BBzP concentrations have 

nonsignificant influences on the profiles of Cg, Cp, and Cd over a year. The p-values for Cs for the 

walls and windows are less than 0.05, suggesting that the Cs profiles of the two prediction cases 

are significantly different (Fig. S8 in the SI). A possible explanation is that BBzP is slowly forming 

an organic layer on the surface of the walls and windows [6]. Therefore, the initial mass transfer 

processes for Cs, which is associated with the initial concentrations, take longer than those for Cg, 

Cp, and Cd. Correlation tests show that the values of Cg and Cp (r = 0.86) as well as the BBzP 

concentrations on the two types of sink surfaces (r > 0.999) are highly correlated regardless of the 

initial concentrations used for the prediction (Fig. S9 in the SI).  
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Fig. 5. Predicted hourly average BBzP concentrations in the gas phase (Cg) and airborne particles 

(Cp) in a newly built room. 
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Fig. 6. Predicted hourly average BBzP concentrations in the settled dust (Cd) and on the surfaces 

(Cs) of a newly built room. 

 

Table 1. Distribution of BBzP concentrations over a year 
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In airborne particles (ng/m3) 0.1 0.5 1.2 2.3 5.8 1.9 2.2 

In settled dust (µg/g) 23.2 52.2 94.3 160.3 297.8 119.1 89.2 

On walls (µg/m2) 6.2 16.8 21.9 24.6 26.2 19.9 6.1 

On windows (µg/m2) 6.1 15.9 20.9 23.5 25.2 19.0 5.8 

Existing room        

In the gas phase (ng/m3) 59.8 117.5 177.2 241.5 383.4 192.7 109.0 

In airborne particles (ng/m3) 0.1 0.5 1.2 2.3 5.8 1.9 2.2 

In settled dust (µg/g) 23.3 52.4 94.8 162.0 299.5 120.0 90.0 

On walls (µg/m2) 11.9 17.7 22.1 24.9 26.6 20.9 4.6 

On windows (µg/m2) 11.4 16.8 21.0 23.6 25.4 19.8 4.4 

 

The environmental factors have combined effects on the mass transfer parameters (Fig. S10 in the 

SI) and concentrations (Fig. S11 in the SI). When the temperature increases, all concentrations 

increase because of the increasing y0 [8,23] and mass transfer coefficients [26,33] and the 

decreasing partition coefficients [34–36]. When the RH increases, Cp and Cd decrease because of 

the decreasing Kp and Kd values [37,38]. The substrate of indoor settled dust includes soil, settled 

particles, human and animal dander, cloth fibers, and fungal material [39–41] and varies widely 

among indoor environments [42]. The impact of RH on Kd was available in the literature only for 

soil [18,38]. No equation is available in the literature to quantitatively address the influence of RH 
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on Ks. Therefore, this influence is not included in the current model. When the PM10 concentration 

increases, all concentrations increase because of the increasing mass transfer coefficients [43,44]. 

When the AER increases, all the concentrations decrease if other environmental factors remain 

unchanged. The contributions of the environmental factors to the variance in the SVOC 

concentrations were estimated using Eq. (6). To reduce the influence of the variance associated 

with the initial conditions and the initial mass transfer process, the analysis was carried out only 

for case 2 (Fig. 7). More than 52% of the variances in all the phases (60% for Cg, 82% for Cp, 52% 

for Cd, 65% for Cs on the walls, and 64% for Cs on the windows) are associated with the 

covariances of the environmental factors, which cannot be separated. In addition, more than 16% 

of the variances in all the phases (27% for Cg, 16% for Cp, 36% for Cd, 19% for Cs on the walls, 

and 20% for Cs on the windows) are associated with the variance in the AER. The variance in 

indoor temperatures contributes to 9% of the variance in Cg. The variance in the RH contributes to 

7% of the variance in Cd. The variance in the indoor PM10 concentrations contributes to 10% of 

the variance in Cs for the walls and windows. Due to the variations in the environmental factors, a 

seasonal difference was observed in all concentrations. The highest 3-month average value of Cg 

(222 ng/m3) appeared in the 3rd quarter of the year (July 1–September 30, 2014), probably due to 

high indoor air temperatures and PM10 concentration, which increase the values of y0 and the mass 

transfer coefficient for the source surfaces. The highest 3-month average values of Cp (2.4 ng/m3) 

and Cs (25 µg/m2 for the walls and 24 µg/m2 for the windows) appeared in the 4th quarter of the 

year (October 1–December 31, 2014), probably due to low AERs and low indoor air temperatures, 

which increase the particle/gas and sink/gas partition coefficients. The highest 3-month average 

value of Cd (181 ng/m3) appeared in the 1st quarter of the year (January 1–March 31, 2014), 
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probably due to the low RH and temperatures in indoor air, which increase the dust/gas partition 

coefficient. 

 

 

Fig. 7. Contributions of the environmental factors to the variances in BBzP concentrations 

(existing room) 

 

3.3. Perspectives for improving the model 

The dynamic model developed in the present study characterizes the SVOC mass transfer 

mechanisms (emission and partition) and reactivity in indoor environments. The influence of 
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indoor environmental factors (temperature, RH, AER, and concentration of total suspended 

particles) on the mass transfer parameters were taken into account in each time step of the 

calculation. The model was validated using measurement results of two studies in the literature. 

Due to the lack of studies on SVOC mass transfer in indoor environments, the validations were 

carried out for DEHP only in the gas phase in an environmental chamber under constant 

environmental conditions and for BBzP in the air, settled dust, walls and windows in a test house 

under regulated environmental conditions. Both the validation and application of the model 

focused on phthalates due to the lack of relevant data on other compounds. The lack of data on the 

input parameters of the model is a crucial limitation to the application of the model to other 

SVOCs. To validate the full prediction capacity of the model, the concentrations of a number of 

SVOCs in all the phases indoors and outdoors need to be measured over a long period of time in 

a real environment. The environmental factors should be monitored during the period of SVOC 

measurements. Moreover, the model can be improved in the following aspects. 

(1) The model is currently developed for an unoccupied room. The influence of human 

activities, e.g., cooking and cleaning, on indoor environmental factors and SVOC concentrations 

has not been considered. Human activities may lead to the emission of particles and chemical 

compounds, resuspension of settle dust, and dust entry and removal. 

(2) The model does not consider SVOC emissions from intermittent sources. These sources 

include, e.g., the emissions of polyaromatic hydrocarbons due to cooking, the spray of synthetic 

musks and pesticides, and other punctual usage of products containing SVOCs.  

(3) The model considers indoor impermeable sink surfaces and does not take into account 

porous sink surfaces. Porous surfaces may lead to significant SVOC reservoirs and extend SVOC 

persistence in an indoor environment. 
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(4) The model considers that the transport efficiency of SVOCs between indoor and outdoor 

environments equals one. In fact, this value may differ depending on the system of ventilation. 

The model requires the concentration of total suspended particles as an input. This value currently 

comes from measurements or the output of other models. The current model does not predict the 

indoor concentration of the total suspended particles, regardless of their origins from indoor or 

outdoor sources. 

(5) The model predicts the average concentration of SVOC in airborne particles and settled 

dust for PM10. Recent studies have shown some effects of particle size distribution and age on 

indoor SVOC concentrations in different phases [45]. These effects should be considered for 

further improvement of the model. For this purpose, the size distribution of indoor airborne 

particles and its changes over time need to be defined based on measurements or modeling 

approaches. Moreover, future studies should address the indoor particle size distribution and 

particle-related parameters, such as the partition coefficient, deposition velocity, and resuspension 

rate, in terms of the size effect. 

 

4. CONCLUSIONS 

A long-term dynamic model was developed to predict the concentrations of SVOCs in indoor 

environments. The model characterizes the emission of SVOCs from multiple source surfaces and 

the sorption of SVOCs onto multiple sink surfaces for the prediction of the SVOC concentrations 

in the gas phase, airborne particles, and settled dust and on each sink surface. The model takes into 

account the mass transfer mechanisms of SVOCs in an indoor environment, the possible 

contribution of the outdoor SVOC concentration when the transfer efficiency is assumed to be one, 
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and the reactions of SVOCs with hydroxyl radicals, nitrate radicals, and ozone. The impacts of 

indoor air temperature, RH, the concentration of the total suspended particles, and the AER on the 

mass transfer parameters and SVOC concentrations are calculated quantitatively in each time step 

of the calculation. Therefore, the model can be applied to both environmental chambers under 

regulated environmental conditions and unoccupied rooms under real environmental conditions.  
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