
HAL Id: hal-02309896
https://cstb.hal.science/hal-02309896

Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A nonlinear shear-lag model applied to chemical anchors
subjected to a temperature distribution

Mohamed Amine Lahouar, Nicolas Pinoteau, Jean-François Caron, Gilles
Forêt, Romain Mege

To cite this version:
Mohamed Amine Lahouar, Nicolas Pinoteau, Jean-François Caron, Gilles Forêt, Romain Mege. A
nonlinear shear-lag model applied to chemical anchors subjected to a temperature distribution. Inter-
national Journal of Adhesion and Adhesives, 2018, 84, pp.438 - 450. �10.1016/j.ijadhadh.2018.05.002�.
�hal-02309896�

https://cstb.hal.science/hal-02309896
https://hal.archives-ouvertes.fr


Final version of the paper published in International Journal of Adhesion and Adhesives, 84, August 2018, p. 438-450 

[https://doi.org/10.1016/j.ijadhadh.2018.05.002] 

1 

 

A nonlinear shear-lag model applied to chemical anchors subjected to a 

temperature distribution 
Mohamed Amine Lahouara,b,*, Nicolas Pinoteaub, Jean-François Carona, Gilles Foreta, Romain 

Megeb 

a Université Paris-Est, Laboratoire Navier (UMR 8205), Ecole des Ponts ParisTech, F-77455 Marne-

la-Vallée, France 
b Université Paris-Est, Centre Scientifique et Technique du Bâtiment (CSTB), 84 avenue Jean Jaurès, 

Champs-sur-Marne, 77447 Marne-la-Vallée Cedex 2, FRANCE. 

 

*Corresponding author. Tel: +33630242016. E-mail address: amine.lahouar@enpc.fr. Present 

address: 6-8 Avenue Blaise Pascal, Ecole Nationale des Ponts et Chaussées, 77420 Champs-sur-

Marne, France. 

Abstract 

Adhesive joints are increasingly used in bridges and buildings construction thanks to their high 

mechanical properties and their ease of implementation. However, the load transfer mechanism within 

adhesive joints is complex and has been the subject of several studies since 1938. Several models have 

been developed to quantify the stress distribution along bond joints. Nevertheless, very few models exist 

today to study the stress distribution in chemical anchors by taking into account the temperature effect. 

This paper presents a non-linear shear-lag model adapted to chemical anchors allowing predicting their 

stress distribution profiles and fire resistance duration for any temperature distribution. The model 

highlights the importance of the temperature distribution on the stress profile. The paper shows that 

when the anchor reaches its maximum axial force, all the elements composing the anchor provide their 

maximum performance at the same time. 

1. Introduction  

Over the years, the use of structural adhesive bonding techniques in concrete constructions is constantly 

increasing [1]. Bonding techniques are employed for different applications such as cracks and joints 

filling, bonding concrete to concrete, metal to metal, steel to concrete and recently composite materials 

to timber or concrete [2] [3]. The main advantage of the use of bonding techniques in construction is 

that bond stresses are more uniformly distributed over the bonded surface area than with other 

conventional fastening methods such as bolts and rivets [4]. This allows working with small bearing 

areas, and therefore leads to lighten the weight of the structure.  

Adhesive joints ensure the load transfer from one adherent to another, essentially by shear stress. 

Nevertheless, the stress distribution along the bond joint is not usually uniform, and exhibit localized 

concentration in specific areas, which reduces the bond resistance and leads in the majority of cases to 

its failure [5]. Several studies have been conducted and refined for more than seven decades in order to 

analyze the axial, shear and peel stress distribution along the bond joint. Volkersen [6] was the first to 

propose a simple Shear-lag model in 1938, to predict the stress distribution along a mechanical joint 

with several fasteners. Later, the model was adapted for bonded lap joints but still ignoring the bending 

and the shear deformation of the adherents, in addition to ignoring the peel stress at the free ends of the 

joint. In 1944, Goland and Reissner [7] improved the Volkersen model by considering the shear and 

normal transverse deformations of the bond. After that, the shear-lag model was enhanced by Oplinger 

[8] by introducing a layered beam theory instead of the classical homogeneous beam model for single 

lap joints. The improvements made on the Volkersen model were continued with Hart-Smith [9] by 

including elastic-plastic adhesive behavior, and then by Tsai, Oplinger and Morton [10] by assuming a 

linear bond stress distribution along the adherents.  
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Since the 1970s, several numerical models have been developed to analyze the stress distribution in 

adhesively bonded joint. The development of sophisticated numerical tools has widened the scope of 

study by including new points of interest. Numerous studies have focused on the mechanical analysis of 

lap joints by predicting the stress concentration factors [11], implementing new theories [12] and non-

linear constitutive laws [13], testing different extension rates [14] and by evaluating the influence of the 

material properties on the stress distribution [15].  

Numerical calculation tools were also used to predict the adhesive joint failure by analyzing the 

interfacial debonding mechanism using two different approaches: 

• The strength of materials approach, which depends on the material properties and supposes that 

debonding occurs when the stress or the material strain exceeds a threshold value [16].  

• The fracture mechanics approach, which involves the generalized stress intensity factors and 

the crack initiation factor. In this approach, the crack propagates once the interfacial toughness 

is exceeded [17]. 

The analysis of the debonding mechanism using these two approaches allowed concluding that the 

debonding starts always from the free ends, i.e. from the stress concentration areas. Consequently, 

several numerical and experimental parametric studies have been conducted to improve the strength 

properties of adhesively bonded joints. These studies target to reduce the amplitude of the stress peaks 

at the ends of the joint, making the stress more uniformly distributed over the bond.  

Numerous researchers have studied the influence of the adhesive thickness on the mechanical 

performance of adhesively bonded joints and showed that the maximum strength decreases by increasing 

the adhesive thickness [18]. Other studies showed that when the thickness of the bond is not constant, 

the stresses are concentrated in the smallest thickness [19]. It has also been demonstrated that increasing 

the bond length decreases the amplitude of the shear peak and makes the bond stress more uniformly 

distributed [4] [20]. 

Other studies showed that the mechanical performance of an adhesive joint could be improved by 

properly varying the mechanical properties of the adhesive over the bond length. Indeed, the variation 

of the adhesive shear modulus over the bond leads to reduce the stress concentration at the ends of the 

joint [5]. The use of several adhesives in the same bond joint is one of the widely used techniques to 

improve the bond stiffness and shear modulus. Stiff and strong adhesives are used in the middle of the 

joint, and flexible and ductile adhesives are positioned at the ends [21]. This configuration leads to a 

more uniform stress distribution and increases the bond strength [22] [23].  

In conclusion, parametric studies carried out on adhesively bonded joints have shown that the 

mechanical performance of the bond joint is mainly governed by the bond geometry and by the material 

properties of the adherents and adhesive. Almost all research works cited here were interested in the 

study of the stress distribution along the adhesively bonded joints without taking into account the 

temperature effect. Nevertheless, Carbas et al. [24] showed that temperature modifies considerably the 

mechanical properties of the adhesive joint.  

This paper presents a nonlinear shear-lag model adapted to chemical anchors by taking into account the 

influence of temperature. The objective of this paper is to study the temperature effect on the stress 

distribution along the anchor and on its mechanical behavior, as well as on its fire resistance duration.  

The first part of this paper is devoted to the adaptation of the shear-lag model to the mechanical problem 

of chemical anchors and to the thermo-mechanical coupling, while exposing the assumptions and the 

steps followed to constitute the model. The second part is reserved to study the effect of a uniform 

temperature distribution on the stress profile along the anchor. This part is also devoted to the analytical 

and numerical resolution of the shear-lag differential equation and to the adaptation of the model to the 

imposed displacement mode for practical reasons. The third part of the paper deals with the general case 
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of temperature distribution for anchors in structure under fire situation. This part focuses on the 

evolution of the mechanical behavior of the anchor for a given thermal profile and for different loading 

levels. Finally, the last part of the paper is devoted to the model validation by comparing the shear-lag 

model results with the experimental data and with results obtained by the resistance integration method, 

used to predict the fire resistance of chemical anchors. 

Despite the fact that the model developed in this paper makes it possible to establish robust conclusions 

on the influence of temperature variation on the mechanical behavior of chemical anchors, it shows 

some limitations that require reflection and development. These limits are mainly related to the non-

consideration of the ribs of the steel rebar, of the possible imperfections that may occur during the 

implementation of the chemical anchor, of the thermal expansion of steel and concrete, and of the 

viscoelastic behavior of the resin. 

Nomenclature  

𝜎𝑠 : Axial stress in the steel rebar section [MPa] 

𝜎𝑐 : Axial stress in the concrete section [MPa] 

𝜀𝑠 : Steel rebar axial strain  

𝜀𝑐 : Concrete axial strain  

𝐸𝑠 : Steel rebar elastic modulus (independent of temperature) [MPa]  

𝐸𝑐 : Concrete elastic modulus (temperature dependent) [MPa] 

𝐴𝑠 : Steel rebar section [mm²] 

𝐴𝑐 : Concrete section [mm²] 

𝑅 : Steel rebar radius [mm] 

𝐿 : Embedment length [mm] 

𝜏 : Adhesive bond stress [MPa]  

Us(x) : Elastic axial displacement of the steel rebar [mm] 

U𝑐(x) : Elastic axial displacement of the concrete induced by concrete crushing [mm] 

V: Axial displacement induced by the shearing of the adhesive at the bottom of the anchor [mm] 

𝛿 : Rebar slip [mm] 

𝜃 : Temperature of the element of anchor [°C] 

 

2. Shear-lag model adapted to the mechanical problem of chemical anchors 

Almost all shear-lag models presented in the literature analyze the stresses distribution along flat single 

or double lap joints at cold state. However, very few models take into account the temperature effect. 

This section deals with the adaptation of the shear-lag equations to the mechanical problem of 

chemically bounded anchors under temperature exposure. The studied configuration is composed of a 

concrete cylinder drilled axially in its center, and of a steel rebar of radius R, introduced into the drilled 

hole along an embedment length L. The spacing between the steel rebar and concrete, representing the 

thickness of the adhesive joint, denoted e (Fig. 1), is assumed to be negligible. The adhesion between 

steel and concrete is assumed to be perfect. An axial tensile force F is applied to the rebar, at the 

beginning of the anchor. The axial stress is assumed to be equal to zero at the bottom of the anchor. The 

anchor is attached to a cylindrical coordinate system, where the anchor axis corresponds to the x-axis 

and the abscissa zero corresponds to the bottom of the anchor. Fig. 1 represents the geometry and the 

mechanical configuration of the studied chemical anchor. 

https://doi.org/10.1016/j.ijadhadh.2018.05.002
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Fig. 1: Geometrical and mechanical configuration of the studied anchor 

2.1- Model assumptions and notions 

Five assumptions are made in order to simplify the shear-lag resolution.  

i. The adherents (rebar and concrete) are homogeneous and linear elastic. 

ii. The adhesive transfers the axial load from the rebar to concrete only by shear stress. 

iii. Bending effects are neglected. 

iv. The normal stresses are uniformly distributed over the cross sections of the rebar and concrete. 

v. The thickness and width of the adhesive and the adherents are constant throughout the bond 

line. 

vi. Radial deformations of the steel rebar are neglected 

vii. The temperature is supposed constant in a bond ring of length dx. This ring includes concrete, 

mortar, steel and the two interfaces. 

2.2- Constitutive equations 

 

Fig. 2: Forces equilibrium in the section of an element of the anchor 

Let us consider the element of the anchor presented in Fig. 2. The equation of the forces equilibrium can 

be written as follows. 

𝜎𝑠(𝑥) 𝐴𝑠 + 𝜎𝑐(𝑥) 𝐴𝑐 = 0                                                                                                                                                  (1) 

In this equation, the axial stress is assumed to be independent of the radial coordinate of the anchor 

element (assumptions iv and vi). These assumptions are generally accepted and used for steel. However, 

it remains to be checked in the radial direction of the concrete section Ac. This verification is necessary 

since the concrete section Ac will be used further in the shear-lag calculations. 

The relationship between the axial stress and the adhesive bond stress is obtained by load equilibrium 

on an element of the bond of length 𝑑𝑥 (equation (2)).   

𝜏(𝑥) =
𝑅

2

𝑑𝜎𝑠(𝑥)

𝑑𝑥
                                                                                                                                                            (2) 
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The anchor slip 𝛿(𝑥) is defined as the difference between the rebar mean displacement and the concrete 

mean displacement at a position x. The rebar displacement is composed of two displacements. A 

displacement denoted U𝑠(x) induced by the elastic elongation of the steel (which depends on x), and a 

displacement V corresponding to the displacement of the rebar at the bottom of the anchor induced by 

the shearing of the bond joint (independent of x). The concrete displacement, denoted U𝑐(x), is induced 

by the concrete compression and depends on the position x of the anchor element.    

𝛿(𝑥) = 𝑈𝑠(𝑥) + 𝑉 − 𝑈𝑐(𝑥)                                                                                                                        (3) 

According to assumption i, steel and concrete are considered as elastic materials. The axial strain in 

these two materials are assumed to be uniform in the section, according to assumption iv. Then, Hooke's 

law can be applied to express the axial strain as a function of axial stress and Young's moduli of steel 

and concrete (equation (4)). Since the studied temperatures do not exceed 200°C, it is assumed that the 

steel elastic modulus is independent of temperature while the concrete elastic modulus varies with 

temperature, according to Eurocode 2 part 1-2 [25]. 

𝑑𝛿(𝑥)

𝑑𝑥
=

𝑑𝑈𝑠(𝑥)

𝑑𝑥
−
𝑑𝑈𝑐(𝑥)

𝑑𝑥
= 𝜀𝑠(𝑥) − 𝜀𝑐(𝑥) =

𝜎𝑠(𝑥)

𝐸𝑠
−

𝜎𝑐(𝑥)

𝐸𝑐(𝜃(𝑥))
                                                                       (4) 

Equation (5) is obtained by substituting equation (1) into equation (4), allowing to link the rebar slip to 

the axial stress. 

𝑑𝛿(𝑥)

𝑑𝑥
= 𝜎𝑠(𝑥) (

1

𝐸𝑠
+

𝐴𝑠

𝐴𝑐
.

1

𝐸𝑐(𝜃(𝑥))
)                                                                                                                        (5) 

Using equations (2) and (5), it is possible to establish the constitutive equation of the shear-lag model 

(equation (6)) allowing describing the slip evolution of the anchor elements. 

𝑑²𝛿(𝑥)

𝑑𝑥²
=

2

𝑅
(
1

𝐸𝑠
+

𝐴𝑠

𝐴𝑐
.

1

𝐸𝑐(𝜃(𝑥))
) 𝜏(𝑥)                                                                                                                  (6) 

In order to solve the shear-lag equation, it is necessary to transform it into a second order differential 

equation. Therefore, it is essential to establish a relationship between the bond stress and the anchor slip, 

as described in equation (7). 

𝜏(𝑥) = 𝑓(𝛿(𝑥), 𝜃(𝑥))                                                                                                                                              (7) 

This relationship can be derived either from the characterization of the mechanical behavior of the 

adhesive at different temperatures, and in this case, the local mechanical properties of the resin (𝐺𝑟𝑒𝑠𝑖𝑛) 

will be taken into account in the equation resolution, or from the characterization of the global 

mechanical behavior of the anchor at different temperatures, and therefore, the mechanical behavior of 

the resin will be modeled as an interfacial cohesive behavior. In the following study, this relationship 

will be established by means of pull-out tests, and therefore by the characterization of the global 

mechanical behavior of the anchor.  

Equation (8) represents the differential equation of the shear-lag adapted to the mechanical problem of 

chemical anchors, taking into account the temperature distribution profile. The resolution of this 

equation enables the knowledge of the slip profile along the anchor (𝛿(𝑥)) at different temperatures. It 

is then possible to deduce the bond stress distribution using the relationship established between anchor 

slip and the bond stress (equation (7)). Subsequently, the axial stress distribution can be calculated using 

equation (2). 

𝑑²𝛿(𝑥)

𝑑𝑥²
=

2

𝑅 
(
1

𝐸𝑠
+

𝐴𝑠

𝐴𝑐𝐸𝑐(𝜃(𝑥))
) 𝑓(𝛿(𝑥), 𝜃(𝑥))                                                                                                            (8) 

https://doi.org/10.1016/j.ijadhadh.2018.05.002
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2.3- Bond stress-anchor slip relationship 

In this study, the mechanical behavior of the resin will be described as an interfacial behavior in pure 

shear mode and therefore using a cohesive model. Several cohesive models exist in the literature to 

describe the bond stress-anchor slip relationship. The simplest models are perfect rigid-plastic and linear 

models. In the perfect rigid-plastic model, the bond stress is assumed constant and independent of the 

anchor slip value. Therefore, the model generates a uniform bond stress distribution and leads 

consequently to a linear distribution of the axial stress. However, in the linear model, the bond stress is 

assumed to increase linearly by increasing the anchor slip. Note that these two simple cohesive models 

do not allow to predict the damage of the bond joint. Nevertheless, several models exist in the literature 

taking into account the damage of the bond joint such as bilinear, exponential and parabolic cohesive 

models. 

In the bilinear model, the bond stress increases linearly by increasing the anchor slip until reaching a 

threshold value from which the interfacial fracture occurs and the bond stress decreases progressively 

until zero value, indicating the total damage of the bond joint. While in the exponential cohesive model, 

the interfacial behavior presents an exponential softening and the stress decreases by increasing the 

anchor slip. However, in the parabolic cohesive model, the variation of the bond stress as a function of 

the anchor slip is described by a parabola on which the bond stress increases by increasing the slip until 

reaching a maximum value and then gradually decreases until reaching zero bond stress. Note that the 

injection of the rigid-plastic perfect, linear, bilinear and exponential cohesive models allow the 

analytical resolution of the shear-lag differential equation, however the use of the parabolic cohesive 

model requires a numerical resolution tool. 

3. Case of a uniform temperature distribution 

This section focuses in the study of the mechanical behavior of chemical anchors in the particular case 

of a uniform temperature distribution (𝜃̅). A similar study was conducted Pinoteau [26], using the 

evolution of the resin mechanical properties with temperature (𝐺𝑟𝑒𝑠(𝜃)) as input data.  However, a study 

carried out on bonded connections showed that “the stiffness of the bond evolves little as a function of 

the stiffness of the adhesive when the adhesive stiffness is greater than 200 MPa” [27]. This means that 

injecting the mechanical properties of the resin into the shear-lag equations does not adequately describe 

the mechanical behavior of the anchor and leads to an underestimation of the stress profile. This 

observation was verified in a previous paper [28] by comparing the adhesive stiffness obtained by 

DMTA characterization tests with the anchors stiffness measured during pull-out tests. In addition, the 

loading / unloading tests presented in [28] highlighted the damage of the adhesive bond during the pull-

out tests. Hence, it is more appropriate to use a cohesive law allowing to take into account the bond 

damage when studying the influence of temperature on the anchor mechanical behavior in order to detect 

any eventual damage which may occur during the temperature increase. 

Therefore, in this section, the bilinear model is chosen as a cohesive model to describe the bond stress-

anchor slip relationship. The interface between steel and concrete is assumed initially intact without any 

defects or damage. The bilinear model is described by the equation (9) and represented in Fig. 3. This 

law allows indeed the analytical resolution of the shear-lag differential equation (8) and the prediction 

of the bond joint damage. 

𝜏(𝛿(𝑥), 𝜃(𝑥)) =

{
 
 

 
 

𝜏𝑓(𝜃)

𝛿1(𝜃)
𝛿(𝜃(𝑥))  𝑤ℎ𝑒𝑛 0 ≤ 𝛿(𝜃(𝑥)) < 𝛿1(𝜃)

𝜏𝑓(𝜃)

(𝛿𝑓(𝜃)−𝛿1(𝜃))
(𝛿𝑓(𝜃) − 𝛿(𝜃(𝑥)))  𝑤ℎ𝑒𝑛 𝛿1(𝜃) ≤ 𝛿(𝜃(𝑥)) < 𝛿𝑓

0  𝑤ℎ𝑒𝑛   𝛿(𝜃(𝑥)) > 𝛿𝑓(𝜃)

(𝜃)                           (9) 
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Fig. 3: Bilinear bond stress-anchor slip relationship 

Consequently, by substituting the bilinear bond stress-anchor slip relationship (equation (9)) in equation 

(8), the differential equations of the shear-lag model become 

𝑑²𝛿(𝑥)

𝑑𝑥²
−  λ2 𝛿(𝑥) = 0     𝑓𝑜𝑟     0 ≤ 𝛿(𝑥) < 𝛿1̅̅̅                                                                                               (10) 

and 

 
𝑑²𝛿(𝑥)

𝑑𝑥²
+ 𝛾2𝛿(𝑥) = 𝛾2 𝛿𝑓̅̅̅     𝑓𝑜𝑟     𝛿1̅̅̅ ≤ 𝛿(𝑥) < 𝛿𝑓̅̅̅                                                                               (11) 

Where 

λ2 =
2𝜏𝑓̅̅ ̅

𝛿1̅̅̅̅
(
1

𝐸𝑠
+

𝐴𝑠

𝐴𝑐
.

1

𝐸𝑐(𝜃̅)
)                                                                                                                               (12) 

𝛾2 =
2𝜏𝑓̅̅ ̅

R(𝛿𝑓̅̅̅̅ −𝛿1̅̅̅̅ )
(
1

𝐸𝑠
+
𝐴𝑠

𝐴𝑐
.

1

𝐸𝑐(𝜃̅)
)                                                                                                                    (13) 

The terms λ and γ, called "anchor parameters", regroup the geometrical and mechanical parameters of 

the anchor.  

3.1- Analytical approach  

For 0 ≤ 𝛿(𝑥) < 𝛿1̅̅̅, the resolution of equation (10) provides the following expressions for the anchor 

slip, the bond stress and the axial stress respectively. 

𝛿(𝑥) = 𝐴 𝑐ℎ(𝜆𝑥) + 𝐵 𝑠ℎ(𝜆𝑥)                                                                                                                (14) 

𝜏(𝑥) =
𝜏𝑓̅̅ ̅

𝛿1̅̅̅̅
(𝐴 𝑐ℎ(𝜆𝑥) + 𝐵 𝑠ℎ(𝜆𝑥))                                                                                                            (15) 

𝜎𝑠(𝑥) =
2𝜏𝑓̅̅ ̅

𝑅𝜆𝛿1̅̅̅̅
(𝐴 𝑠ℎ(𝜆𝑥) + 𝐵 𝑐ℎ(𝜆𝑥))                                                                                                         (16) 

For 𝛿1̅̅̅ ≤ 𝛿(𝑥) < 𝛿𝑓̅̅̅, the solution of equation (11) is of the form 

𝛿(𝑥) = 𝐶 sin[𝛾(𝑥 − 𝐿 + 𝑎)] + 𝐷 cos[𝛾(𝑥 − 𝐿 + 𝑎)] + 𝛿𝑓̅̅̅                                                                            (17) 

𝜏(𝑥) =
𝜏𝑓̅̅ ̅

(𝛿𝑓̅̅̅̅ −𝛿1̅̅̅̅ )
(-𝐶 sin[𝛾(𝑥 − 𝐿 + 𝑎)] − 𝐷 cos[γ(𝑥 − 𝐿 + 𝑎)])                                                                     (18) 

𝜎𝑠(𝑥) =
2𝜏𝑓̅̅ ̅

𝑅 (𝛿𝑓̅̅̅̅ −𝛿1̅̅̅̅ )𝛾
(𝐶 cos[𝛾(𝑥 − 𝐿 + 𝑎)] − 𝐷 sin[𝛾(𝑥 − 𝐿 + 𝑎)])                                                               (19) 

Where "𝑎" is the length of the partially damaged zone, A, B, C and D are the integration constants 

determined using boundary and continuity conditions. These conditions can be written as follows. 
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• The axial stress at the bottom of the anchor is zero. 

𝜎𝑠(0) = 0                                                                                                                                                  (20) 

• The slip at the boundary between partially damaged and undamaged zone is equal to 𝛿1̅̅̅. 

𝛿(𝐿 − 𝑎) = 𝛿1̅̅̅                                                                                                                                             (21) 

• The bond stress at the boundary between partially damaged and the undamaged zone is equal 

to 𝜏𝑓̅. 

𝜏(𝐿 − 𝑎) = 𝜏𝑓̅                                                                                                                                           (22) 

• The axial stress is continuous at the crack tip. 

𝜎𝑠(𝐿 − 𝑎)− = 𝜎𝑠(𝐿 − 𝑎)+                                                                                                                      (23) 

Thus, using equation (20) we obtain 𝐵 = 0. Using equation (21) we obtain 𝐴 =
𝛿1̅̅̅̅

𝑐ℎ(𝜆(𝐿−𝑎))
. Using 

equation (22), we found 𝐷 = (𝛿1̅̅̅ − 𝛿𝑓̅̅̅). Finally, using equation (23) we obtain 𝐶 = (𝛿𝑓̅̅̅ −

𝛿1̅̅̅)
𝛾

𝜆
tanh (𝜆(𝐿 − 𝑎)). 

Consequently, for 0 ≤ 𝛿(𝑥) < 𝛿1̅̅̅, 

𝛿(𝑥) = 𝛿1̅̅̅
𝑐ℎ(𝜆𝑥)

𝑐ℎ(𝜆(𝐿−𝑎))
                                                                                                                                 (24) 

𝜏(𝑥) = 𝜏𝑓̅
𝑐ℎ(𝜆𝑥)

𝑐ℎ(𝜆(𝐿−𝑎))
                                                                                                                                       (25) 

𝜎𝑠(𝑥) =
2𝜏𝑓̅̅ ̅

𝑅 𝜆

𝑠ℎ(𝜆𝑥)

𝑐ℎ(𝜆(𝐿−𝑎))
                                                                                                                                (26) 

And for 𝛿1̅̅̅̅ ≤ 𝛿(𝑥) < 𝛿𝑓̅̅̅, 

𝛿(𝑥) = (𝛿𝑓̅̅̅ − 𝛿1̅) [
𝛾

𝜆
tanh(𝜆(𝐿 − 𝑎)) sin[𝛾(𝑥 − 𝐿 + 𝑎)] − 𝑐𝑜𝑠[𝛾(𝑥 − 𝐿 + 𝑎)]] + 𝛿𝑓̅̅̅                            (27)  

𝜏(𝑥) = −𝜏𝑓̅ [
𝛾

𝜆
tanh(𝜆(𝐿 − 𝑎)) sin[𝛾(𝑥 − 𝐿 + 𝑎)] − 𝑐𝑜𝑠[𝛾(𝑥 − 𝐿 + 𝑎)]]                                           (28) 

𝜎𝑠(𝑥) =
2𝜏𝑓̅̅ ̅

𝑅𝛾
[
𝛾

𝜆
tanh(𝜆(𝐿 − 𝑎)) cos[𝛾(𝑥 − 𝐿 + 𝑎)] + 𝑠𝑖𝑛[𝛾(𝑥 − 𝐿 + 𝑎)]]                                                (29)      

Fig. 4 shows the bond stress profile at 𝜃̅=110°C determined by the analytical resolution of the shear-lag 

differential equation using the equations above. The length of the partially damaged zone of the bond 

"𝑎" is determined manually by determining the position of the anchor element showing the maximum 

bond stress value 𝜏𝑓̅ for each loading level. Nevertheless, the new value of "𝑎" must be injected manually 

for each loading level in order to satisfy the continuity conditions presented by equations (21), (22) and 

(23). However, there is another way to overcome this continuity problem by piloting the shear-lag model 

in imposed displacement mode. Table 1 and Table 2 summarize respectively the geometric and 

mechanical parameters used to plot the bond stress distribution presented in Fig. 4.  

Geometric parameters 

L [mm] 

R [mm] 

r [mm] 

120 

6 

75 
Table 1: Geometric parameters used in the calculation of the bond stress distribution 
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𝜽̅ [°𝑪] 110 

𝑬𝒔[GPa] 

𝑬𝒄[GPa] 

𝜹𝟏̅̅ ̅ [mm] 

210 

26 

1.01 

𝜹𝒇̅̅ ̅ [mm] 2.81 

𝝉𝒇̅̅ ̅[MPa] 5.56 

F [kN] 24.8 
Table 2: Mechanical parameters used in the calculation of the bond stress distribution at 110°C 

 

Fig 4: The use of boundary conditions in solving shear-lag equations 

3.2- Analytical approach with imposed displacement mode  

This section tends to adapt the shear-lag equations in order to study the stress distribution generated by 

an imposed displacement at the beginning of the anchor. Therefore, the solutions of the shear-lag 

differential equations become dependent on the boundary condition applied at the beginning of the 

anchor, as described by equation (30). 

𝛿(𝑥 = 𝐿) = (𝛿𝑓̅̅̅ − 𝛿1̅̅̅) [
𝛾

𝜆
tanh(𝜆(𝐿 − 𝑎)) sin[𝛾𝑎] − 𝑐𝑜𝑠[𝛾𝑎]] + 𝛿𝑓̅̅̅ = 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                   (30) 

Knowing 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, it is possible to determine 𝛿(𝑥), 𝜏(𝑥) and 𝜎(𝑥) profiles using the equations (27), 

(28) and (29) in addition to continuity conditions. Finally, the length of the partially damaged zone"𝑎" 
can be determined automatically from the position of the element of the anchor exhibiting the maximum 

bond stress value, since the continuity conditions will always be satisfied in the case of imposed 

displacement mode. 

3.3- Numerical discretization  

This section presents the resolution of the shear-lag differential equations using the finite difference 

method (FDM). Indeed, the resolution of the shear-lag equations numerically using FDM allows 

studying complex cohesive laws, such the parabolic cohesive model, which cannot be solved 
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analytically. Therefore, the anchor is discretized into n elements numbered from 1 to n. Each element is 

of length ∆𝑥, chosen sufficiently small to assume a uniform bond stress distribution over the element. 

Each element has two borders, shared with the neighboring elements. The border between two 

successive elements of the anchor is denoted by an index i varying from 0 to N. The border of index 0 

corresponds to the beginning of the anchor and the border of index N corresponds to the bottom of the 

anchor. Three mechanical quantities are associated to each element and are 𝛿𝑖,  𝜏𝑖  and 𝜎𝑖
𝑠. These 

quantities are characteristic of the element and vary according to its temperature and to its position in 

the anchor. 𝛿𝑖  and 𝜎𝑖
𝑠 are expressed at the border indexed i, however 𝜏𝑖 is expressed over the element 

comprised between the borders indexed i and i+1 (Fig. 5). 

 

Fig. 5: Anchor discretization into n elements 

The finite difference numerical model presented in this paper is designed to impose a displacement 

amount at the beginning of the anchor, as done in the previous section with the analytical model. 

Therefore, the resolution of the shear-lag differential equation is based on three boundary conditions.  

• The amount of displacement at the beginning of the anchor is equal to the imposed displacement. 

𝛿0̅̅ ̅ = 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                                                                                              (31) 

• The amount of bond stress in the first element of the anchor is deduced from the amount of the 

imposed displacement using the bond stress-slip relationship. 

𝜏0̅ = 𝑓(𝛿0̅̅ ̅)                                                                                                                                                     (32) 

• The axial stress at the bottom of the anchor is equal to zero. 

𝜎𝑁
𝑠 = 0                                                                                                                                                    (33)  

Therefore, the discretization of the anchor into n elements requires the rewriting of the shear-lag 

equations according to the finite difference language as follows. Equation (34) is the adaptation of 

equation (2) to the finite difference language, allowing calculating the axial stress value at the border 

i+1. The axial stress at the border i+1 is equal to the axial stress value at the border i, decreased by the 

bond stress generated in the element i.  

σi+1,j
s̅̅ ̅̅ ̅̅ ̅̅ =σi,j

s̅̅ ̅̅ ̅- (
2

R
 τi,j̅̅ ̅̅  ∆x)                                                                                                                            (34) 

Equation (35) is derived from equation (5). The value of the slip at the border i+1 is equal to the slip at 

the border i minus the slip induced by the axial stress applied over the element i+1(equal to the average 

axial stress between the borders i and i+1). 

δi+1,j̅̅ ̅̅ ̅̅ =δi,j̅̅̅̅ -∆x (
1

Es
+

As

AcEc(θ̅)
)(
σi+1,j

s̅̅ ̅̅ ̅̅ ̅̅ +σi,j
s̅̅ ̅̅ ̅

2
)                                                                                                        (35) 
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Finally, the bond stress over the element i+1 is deduced from the slip at the border i+1 using equation 

(7). The adaptation of equation (7) to finite difference language corresponds to equation (36). 

𝜏𝑖+1,𝑗 = 𝑓(𝛿𝑖+1,𝑗)                                                                                                                                        (36) 

The resolution of the shear-lag differential equation using the Finite Difference Method (FDM) with 

imposed displacement mode is done by iteration and is based on a convergence calculation ensuring the 

uniqueness of the solution. Therefore, an index j is introduced in the equations indicating the number of 

the convergence loop. Indeed, by solving numerically the equations (34), (35) and (36), the boundary 

condition 𝜎𝑁
𝑠 = 0 at the bottom of the anchor is not always satisfied. It is then necessary to re-estimate 

the value of 𝜎0
𝑠 and to perform calculations several times until converging toward the boundary 

condition imposed at the bottom of the anchor. The estimation of the axial stress value at the beginning 

of the anchor 𝜎0
𝑠 for each convergence loop is done according to a convergence criterion.  

The convergence criterion suggested in this study is the False Position Method (called also Regula Falsi 

Method) [29]. Indeed, this method allows converging more quickly toward the desired solution as the 

suggested value at the loop j depends on the values estimated for the two previous loops j-1 and j-2.  

 

Fig. 6: Stress and slip profiles for different levels of imposed displacement obtained by analytical and finite difference 

models: a) Slip profile, b) Bond stress profile, c) Axial stress profile, d) Bond stress-slip cohesive law 

Curves in Fig. 6 a), b) and c) represent respectively the axial stress, bond stress and the slip distribution 

along the anchor obtained analytically and numerically using the Finite Difference Method (FDM). 

These calculations are done for different levels of imposed displacement and for a uniform temperature 

distribution along the anchor (𝜃̅ = 20°𝐶). Geometric input data used in these calculations are the same 

as those presented in Table 1. The mechanical input data are shown in Table 3.   
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 𝜹𝒊𝒎𝒑𝒐𝒔𝒆𝒅 [mm] 0.106 0.75 2 

Mechanical 

parameters 

𝑬𝒔[GPa] 210 210 210 

𝑬𝒄[GPa] 30 30 30 

𝜹𝟏̅̅ ̅ [mm] 0.46 0.46 0.46 

𝜹𝒇̅̅ ̅ [mm] 8.77 8.77 8.77 

𝝉𝒇̅̅ ̅[MPa] 27.7 27.7 27.7 

F [kN] 20 122 105 
Table 3: Mechanical input data used in the stress profiles calculations injected into the analytical and numerical models 

The amount of imposed displacement generating the curves in Fig. 6 are 0.11 mm, 0.75 mm and 2 mm. 

These displacement values generate an amount of axial force at the beginning of the anchor equal to 20 

kN, 122 kN and 105 kN respectively. These displacement quantities allow describing the stress and slip 

profiles at three different mechanical states. Indeed, by imposing 0.11 mm displacement amount at the 

beginning of the anchor, the generated axial force is equal to 20 kN. For this amount of load, the anchor 

exhibits a reversible elastic mechanical behavior and the adhesive joint remains intact. However, by 

increasing the imposed displacement up to 0.75 mm, the applied load at the beginning of the anchor 

increases to 122 kN, exceeding the bearing capacity of the anchor. Therefore, a crack forms and 

propagates in the bond joint. Calculations showed that for this quantity of applied load, the length of the 

bond damaged zone is equal to 𝑎 = 80 𝑚𝑚 from the beginning of the anchor. By increasing the imposed 

displacement up to 2 mm, the crack continues to propagate over the entire length of the bond joint 

leading to its total damage.  

Fig. 6 shows that the profiles obtained by analytical and numerical calculations are identical, which 

confirms the reliability of the Finite Difference numerical resolution method.  

Curves in Fig. 6 a) expose the variation of the anchor slip for the three loading levels. Results show that 

the slip increases by increasing the imposed displacement at the beginning of the anchor. When the 

imposed displacement is small, the slip distribution exhibits a linear trend, which becomes exponential 

by increasing the imposed displacement. 

Curves in Fig. 6 b) show the distribution profile of the bond stress along the adhesive joint. Results show 

that when the anchor is in the reversible elastic zone, the bond stress profile exhibits an exponential 

trend. For an axial load equal to 20 kN, the maximum value of the bond stress is reached at the beginning 

of the anchor and is equal to 6.4 MPa. However, the lowest stress value is equal to 3.5 MPa and is 

located at the bottom of the anchor. By increasing the imposed displacement up to 0.75 mm, the induced 

load exceeds the bearing capacity of the anchor leading to the bond damage over 80 mm, as mentioned 

in the previous paragraph. The maximum bond stress is reached at the crack tip, and is equal to 𝜏𝑓̅. The 

level of bond stress decreases in the damaged part and concentrates in the intact zone of the anchor, 

ensuring its resistance to the applied load. The increase in the imposed displacement up to 2 mm leads 

to the damage of the entire bond joint. Therefore, the anchor becomes no longer able to resist to the 

applied load and slips, generating a decay in the average bond stress. 

Curves in Fig. 6 c) show the axial stress distribution for the three studied loading levels. Curves show 

that on the elastic zone, the axial stress profile presents an exponential trend, which becomes linear by 

increasing the load. Note here that for 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 0.75 mm and 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 2 mm, the axial stress exceeds 

the steel yield stress, which is around 500 MPa for a class B500A steel. In fact, this is due to the 

assumption of linearity of the adherents (assumption i, section 2.1), which does not fix a yield strength 

value for the adherents. 

The curve in Fig. 6 d) shows the position of the anchor elements on the bond stress-slip cohesive law, 

used to describe the mechanical behavior of the bonded interface between the steel rebar and concrete. 

The curve shows that for 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.11 mm, the entire anchor is located in the elastic reversible zone. 
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However, when 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ increases up to 0.75 mm, the mechanical properties of the anchor are divided 

into two portions. A pre-peak portion, where the mechanical properties of the anchor still linear 

reversible, and a post-peak portion, where the bond is damaged and exhibits irreversible mechanical 

behaviour. For 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 2 mm, the curve shows that the entire anchor is located in the damaged zone 

and therefore the more the imposed displacement increases, the more the average bond stress decreases.  

3.4- Temperature effect on the stress distribution profile  

In this section, the influence of a uniform temperature increase on the stress distribution along the anchor 

is examined. The temperature influence is assessed by comparing between the stress profiles for five 

different temperatures (20°C, 40°C, 65°C, 80°C and 110°C). Slip profiles are calculated using equations 

(31) and (35). The axial and bond stress profiles are therefore derived from these two equations using 

equations (34) and (36), as explained in the previous section. For each studied temperature, an amount 

of displacement is imposed allowing generating the same amount of axial force at the beginning of the 

anchor equal to 25 kN. Table 4 summarizes the mechanical input data injected into the model. 

Geometrical input data are the same as those presented in Table 1. 

  20°C 40°C 65°C 80°C 110°C 

Mechanical 

parameters 

𝜹𝒊𝒎𝒑𝒐𝒔𝒆𝒅 [mm] 0.13 0.19 0.41 0.54 1.06 

𝑬𝒔[GPa] 210  210  210  210  210  

𝑬𝒄[GPa] 30  29 28 27 26 

𝜹𝟏̅̅ ̅ [mm] 0.46 0.61 0.96 0.88 1.01 

𝜹𝒇̅̅ ̅ [mm] 8.77 7.89 7 4.87 2.81 

𝝉𝒇̅̅ ̅[MPa] 27.7 23.2 14.5 9.2 5.6 

Table 4: Input data used for the stress profiles calculations for different temperatures 

The input data cited in Table 4 relating to the anchor mechanical parameters at high temperature (𝛿1̅̅̅, 

 𝛿𝑓̅̅̅ and 𝜏𝑓̅) are obtained by pull-out tests performed at the studied temperatures. The concrete elastic 

modulus variation as a function of temperature is provided by the Eurocode 2, part 1-2 [25]. 
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 Fig. 7: a) Axial stress, b) bond stress, c) Anchor slip profiles at different temperatures obtained using 

the analytical shear-lag solution 

Curves in Fig. 7 show the stress and slip distribution along the anchor at different temperatures. Fig. 7 

a) shows that the axial stress profile presents an exponential trend when temperatures are close to 

ambient temperature. However, by increasing the anchor temperature, the axial stress profile tends to 

become linear. Based on equation (2), the linearization of the axial stress profile at high temperature 

leads to a uniform bond stress distribution along the anchor, which is confirmed in Fig. 7 b). Indeed, the 

analysis of the bond stress profiles at different temperatures shows that for temperatures close to ambient 

temperature, the bond stress distribution exhibits an exponential trend. However, by increasing the 

anchor temperature, this distribution becomes uniform.  

Fig. 7 b) shows that, for the same loading level, the increase of the anchor temperature up to 110 ° C 

leads to the partial damage of the bond joint. The bond damage is manifested by the local decay in the 

bond stress value on the damaged zone, as highlighted by the dashed line on Fig. 7 b). The bilinear 

shear-lag model shows that for 25 kN axial force applied at the beginning of the anchor and for an anchor 

temperature equal to 110°C uniformly distributed, the bond joint presents a damaged zone equal to 52 

mm. 

In addition, results in Fig. 7 c) show that the temperature increase leads to increase the anchor slip. 

Indeed, this can be explained by the fact that the anchor temperature increase leads to a decay in the 

mechanical properties of the resin, such as its shear modulus [28] [30], which therefore leads to decrease 

the anchor stiffness. Consequently, the temperature increase leads to increase the anchor slip. 

To conclude, the shear-lag model shows that a uniform temperature increase affects the stress 

distribution along the anchor by the linearization of the axial stress distribution and by making the bond 
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stress uniformly distributed over the anchor. However, the increase in the temperature of the anchor may 

lead, under certain conditions, to the damage of the bond joint. 

4. Case of a non-uniform temperature distribution 

This section presents the resolution of the shear-lag equation (equation (8)) in the general case, i.e. for 

any temperature distribution along the anchor. A set of curves describing the relationship between the 

adhesive bond stress and the anchor slip at different temperatures are used as input data. These curves 

are obtained experimentally by performing pull-out tests at stabilized temperature on steel rebars 

chemically bonded into concrete. These tests were carried out at several temperatures varying between 

20°C and 130°C. The test procedure is described in a previous paper [28]. The experimental curves are 

shown in Fig. 8. 

 

Fig. 8: Bond stress – anchor slip curves obtained by pull-out tests at different temperatures 

The approximation of the curves in Fig. 8 using a bilinear bond stress - anchor slip law allows the 

resolution of the shear-lag equations analytically but does not describe adequately the mechanical 

behavior of the anchor at different temperatures, as shown in Fig. 9. Consequently, in the rest of this 

study, the bond stress - anchor slip curves will be fitted using the Model Code 2010 (MC2010) [31] 

described by equation (37). Indeed, the MC2010 is a cohesive law combining the parabolic, perfect 

rigid-plastic and bilinear laws. It divides each pull-out curve, presented in Fig.8, into four portions.  

• A first portion, representing the reversible elastic mechanical behavior of the anchor, described 

by a parabolic equation. The coefficient α (0 ≤ α ≤ 1) allows modeling all usual forms of a bond 

stress – slip relationship  (α=0 for a constant stress, α=1  for bond stress-slip relationship with 

linear increasing bond stress) 

• A second portion described by a constant, equal to the maximum resistance of the anchor. On 

this portion, the adhesive bond stress remains constant when increasing the anchor 

displacement. 

• A linear portion describing the damage of the bond joint. Over this portion, the increase in the 

anchor slip leads to reduce the amount of the bond stress applied at the interface between the 

steel rebar and concrete. 

• Finally, a constant portion, equal to the residual resistance of the anchor, generated by the 

friction between steel rebar and concrete. In this study, the residual anchor resistance in chosen 

equal to zero. 
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𝜏(𝛿(𝑥), 𝜃(𝑥)) =

{
 
 

 
 𝜏𝑚𝑎𝑥(𝜃) (

𝛿(𝑥,𝜃)

𝛿1(𝜃)
)
𝛼(𝜃)

                                                𝑤ℎ𝑒𝑛  0 ≤  𝛿(𝑥, 𝜃) ≤  𝛿1(𝜃)        

𝜏𝑚𝑎𝑥(𝜃)                                                                        𝑤ℎ𝑒𝑛   𝛿1(𝜃) <  𝛿(𝑥, 𝜃) ≤ 𝛿2(𝜃)
𝜏𝑚𝑎𝑥(𝜃)

𝛿2(𝜃)−𝛿3(𝜃)
 (𝛿(𝑥, 𝜃) − 𝛿2(𝜃)) + 𝜏𝑚𝑎𝑥(𝜃)             𝑤ℎ𝑒𝑛   𝛿2(𝜃) <  𝛿(𝑥, 𝜃) ≤ 𝛿3(𝜃)

0                                                                   𝑤ℎ𝑒𝑛 𝛿(𝑥, 𝜃) > 𝛿3(𝜃)

             (37) 

In addition, in the case of a non-uniform temperature distribution, the term λ (anchor parameter) 

represented previously in equation (12) becomes temperature-dependent, and therefore dependent on 

the 𝑥 position of the anchor element. Consequently, it is no longer easy to solve the shear-lag equations 

analytically, and therefore it is more relevant to use a numerical model. Thus, the shear-lag equations 

are solved numerically using the finite difference model (FDM) presented in section 3.3. The FDM 

equations used to solve the shear-lag equations are identical to those used for a uniform temperature 

distribution and described by equations (34), (35) and (36). 

Fig. 9 shows the approximation of pull-out curves using the bilinear cohesive law and the MC2010. For 

the clarity of the graph, only a few pull-out curves are shown in Fig. 9. Comparisons show that the error 

between experimental curves and MC2010 is close to 5%, which proves that the MC2010 describes 

better the mechanical behavior of chemical anchors at different temperatures than the bilinear law. Table 

5 summarizes the variation of the mechanical parameters of the anchor at different temperatures, 

extracted from the whole curves shown in Fig. 8 using the MC2010. These parameters are specific to 

the resin used in making the anchor and will be injected in the shear-lag model to calculate the stress 

distribution profile for the general case of temperature distribution. 

 

Fig. 9: Experimental and MC2010 pull-out curves for different temperatures 
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θ [°C] τmax [MPa] δ1 [mm] δ2 [mm] δ3 [mm] α 

20 27.1 0.1 0.7 6.1 0.3 

25 29.9 0.2 0.8 6.7 0.7 

38 27.2 0.2 1.1 6.8 0.6 

45 27.2 0.5 0.9 6.3 0.4 

66 14.4 0.6 1 2.1 0.8 

73 12.6 0.7 1.1 2.1 0.7 

80 9.1 0.7 0.9 2.6 0.6 

91 6.4 0.9 1.6 3.3 0.7 

101 6 0.8 0.9 2.2 0.9 

113 4.9 0.9 1.2 1.9 0.9 

130 1.2 0.7 1.1 3.2 0.7 

Table 5: Anchor mechanical parameters for different temperatures extracted from experimental curves using MC2010 law 

The remainder of this section presents the adaptation of the shear-lag model to a concrete structure 

containing chemical anchors exposed to ISO 834-1 fire until its collapse. The shear-lag model will be 

used further to predict the fire resistance duration of this structure. The structure is composed of a 2.94 

m x 2 m x 0.15 m cantilever concrete slab, connected to a concrete wall using 8 bonded rebars. The steel 

rebars are of diameter 16 mm, anchored in the concrete wall using the same epoxy resin used for pull-

out tests (Fig. 8). The embedment length of the chemical anchors is set at 135 mm. The concrete slab is 

mechanically loaded by a 325 kg dead weight positioned at 2.2 m from the surface of the wall, and 

thermally loaded following the standard ISO 834-1 fire curve [25] until collapse. Thermal calculations 

carried out by finite element analysis using Cast3M software and concrete thermal properties provided 

by the Eurocode [25] allowed to reproduce the propagation of the temperature along the anchors at 

different times of ISO fire exposure (Fig. 10). The obtained thermal profiles will then be injected into 

the shear-lag model to calculate the evolution of the bearing capacity of chemical anchors. In other 

situations, it is possible to determine temperature profiles with other methods than EC2. These 

temperatures are used as entry data for the shear-lag model and are not coupled to the mechanical step. 

 

Fig. 10: Evolution of the temperature distribution along the anchor during the ISO 834-1 fire exposure 
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Analytical mechanical calculations carried out on the studied configuration showed that the load applied 

on each chemical anchor is around 48 kN (± 3 kN). This amount of tensile load will make it possible to 

determine the moment from which the bearing capacity of the anchors becomes lower than the applied 

load and hence, will be a key factor in the prediction of the fire resistance of the studied structure using 

the shear-lag model.  

In this case study, the anchor is divided into 46 elementary elements in the shear-lag model. The length 

of each element is ∆𝑥 = 3 mm. Temperature profiles presented in Fig. 10 show that the exposure of the 

structure to the ISO 834-1 fire leads to the creation of a thermal gradient along the anchor. After 90 

minutes of ISO fire exposure, the beginning of the anchor exhibits the highest temperature, around 92°C, 

while the bottom exhibits the lowest temperature, around 31°C. The thermal gradient leads to the 

modification of the mechanical properties of the anchor elements [32]. Curves in Fig. 11 represents the 

bond stress – anchor slip relationship in each element composing the anchor for 90 minutes of ISO fire 

exposure. Curves show that for low temperatures, the anchor elements exhibit high stiffness and bond 

resistance. However, the increase in the element temperature leads to a decay in its stiffness and in its 

bond resistance. The curves also show that the amount of slip needed to reach the yield strength of the 

anchor element (𝛿1) increases by increasing the temperature due to the stiffness decay under the 

temperature effect. Nevertheless, the amount of slip leading to the pull-out of the anchor (𝛿2) decreases 

when temperature increases due to the decrease of the bond resistance. 

 

Fig. 11: Bond stress-slip relationship determined by interpolation of experimental parameters in table 5 for 90 minutes of 

ISO fire exposure 

Curves in Fig. 12 a) show the variation of the anchor constitutive law (vertical curves), governing the 

mechanical behavior of the anchor, and induced by four different axial forces reflecting four different 

mechanical states. Each constitutive law is composed from the position of each element of the anchor 

on the adhesive bond stress–slip curves, presented in light color in Fig. 12 a). Note that these bond 

stress–slip curves are identical to those shown in Fig. 11, relative to a thermal profile generated by the 

exposure of the studied structure to the ISO fire for 90 minutes.  
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Fig. 12: a) Anchor constitutive law variation for different loading levels. b) Theoretical axial force-anchor slip curve 

obtained by the shear-lag model for 90 minutes ISO fire exposure 

The first vertical curve (N°1-Elastic (F = 80 kN)) describes the anchor constitutive law for an imposed 

displacement equal to 0.41 mm, generating 80 kN axial force at the beginning of the anchor. For this 

amount of imposed displacement, the curve shows that all the anchor elements are in the elastic 

reversible mechanical zone. By increasing the imposed displacement up to 0.75 mm, the anchor reaches 

its yielding limit and the generated axial force applied at the beginning of the anchor reaches the load 

bearing capacity of the anchor (Fmax). Curve N°2 in Fig. 12 a) shows that for F = Fmax=113 kN, the 

anchor elements still in the reversible elastic zone, but reach their yielding limit at the same moment. 

This observation is very important and allows confirming that before the bond damage, all the anchor 

elements provide their maximum performance. This conclusion will be elaborated in the following 

section.  

The increase of the imposed displacement beyond 0.75 mm leads to the damage of the bond. The third 

vertical curve in Fig. 12 a) shows the position of the anchor constitutive law for an imposed displacement 

value equal to 1.15 mm generating an axial force equal to 110 kN. For this displacement value, at least 

a portion of the adhesive bond joint should be damaged. Indeed, the third curve in Fig. 12 a) shows that 

the elements at the beginning of the anchor (hot part) are located on the third zone of the bond stress – 

slip curves, reflecting the damage of the bond joint. At the same time, the elements at the bottom of the 

anchor (cold part) are located on the plastic plateau, and therefore do not present any damage. 

Consequently, the anchor is damaged only in its beginning. Calculations carried out using the numerical 

FDM shear-lag model show that the bond joint presents, for this amount of imposed displacement, 33 

mm of damage length.  

The last vertical curve in Fig. 12 a) describes the constitutive law of the anchor for an imposed 

displacement equal to 2.26 mm. For this amount of displacement, Fig. 12 a) shows that the totality of 

the anchor elements are located on the mechanical zone describing the damage of the bond. 

Nevertheless, the axial force generated by the imposed displacement is not zero and is around 70 kN. 

Indeed, despite the damage of the entire bond joint, the anchor continues to resist to the applied load by 

friction with concrete surface until its pull-out, which explain the residual axial force presented in the 

damaged anchor [28]. 

Curve in Fig. 12 b) shows the theoretical variation of the axial force as a function of the displacement 

imposed at the beginning of the anchor after 90 minutes of ISO fire exposure. The curve shows that the 

anchor exhibits a linear elastic behavior until reaching Fmax corresponding to an imposed displacement 

equal to 0.74 mm. It was possible, using this curve, to calculate the global stiffness of the anchor for 90 

minutes of ISO fire exposure, which is found equal to 183 kN/mm. By increasing the imposed 

displacement, the anchor exhibits a constant axial force caused by the yielding of the bond joint, until 

reaching 1.149mm. Beyond this displacement value, the bond is damaged and the axial force generated 

https://doi.org/10.1016/j.ijadhadh.2018.05.002


Final version of the paper published in International Journal of Adhesion and Adhesives, 84, August 2018, p. 438-450 

[https://doi.org/10.1016/j.ijadhadh.2018.05.002] 

20 

 

at the beginning of the anchor decreases progressively until the total pull-out of the anchor. The points 

presented on this curve indicate the position of the four mechanical states studied in Fig. 12 a). 

 

Fig. 13: a) Axial stress, b) bond stress and c) Anchor slip distribution in case of a thermal gradient for different imposed 

displacement values 

Curves in Fig 13 a), b) and c) describe respectively the axial stress, the bond stress and the anchor slip 

distribution for the four imposed displacement values studied in this section and for a thermal profile 

generated by 90 minutes ISO fire exposure. Curves in Fig. 13 a) show that under a thermal gradient 

effect, the axial stress profile exhibits a logarithmic trend, unlike the case of a uniform temperature 

distribution. The increase in the displacement imposed at the beginning of the anchor increases the axial 

stress transferred to the anchor until reaching a maximum value. When the maximum axial stress value 

is reached, the bond joint yields and the axial stress distribution along the anchor remains the same as 

well as all the elements composing the anchor still located on the plastic plateau. 

Fig. 13 a) and b) show that for 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑= 0.75 mm and 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑= 1.15 mm, the axial and bond stress 

profiles are virtually identical. Indeed, as explained previously, for 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑= 1.15 mm, only the anchor 

elements positioned at 33 mm length from the beginning of the anchor are damaged, while the rest of 

the anchor elements are located on the plastic plateau. Consequently, for 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑= 0.75 mm and 

𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑= 1.15 mm, the axial and bond stress distribution profiles still close. However, the increase of 

𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑 up to 2.26 mm leads to the total damage of the bond. Curve in Fig. 13 b) relative to 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑= 

2.26 mm shows that only about 87 mm of the anchor continue to resist to the imposed axial force by 

friction with the concrete surface, whereas the elements present at the first 48 mm of the anchor exhibit 

a zero bond stress value.  

It is important to note from Fig. 13 b) that unlike the case of a uniform temperature distribution, the 

presence of a thermal gradient along the anchor leads to a bond stress concentration in the coldest zones 

of the anchor, i.e. in the bottom of the anchor. This observation is valid even when all the elements 

composing the anchor are in the linear elastic mechanical zone. 
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Fig. 14: Damage propagation as a function of the displacement imposed at the beginning of the anchor 

The curve in Fig. 14 describes the damage propagation along the bond joint as a function of the 

displacement imposed at the beginning of the anchor. The curve shows that the initiation of the damage 

starts as soon as the imposed displacement reaches the value of 1.11 mm. From this displacement value, 

the damaged propagates along the bond linearly up to 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑 =1.16 mm. By reaching 1.16 mm, the 

damage propagation is accelerated. Fig. 14 shows that when the length of the damaged zone becomes 

equal to 72 mm (for 𝛿𝑖𝑚𝑝𝑜𝑠𝑒𝑑= 1.17 mm), the damage propagates brutally over the entire remaining 

embedment length. 

5. Model validation and comparison with the resistance integration method 

The aim of this section is to assess the capacity of the model to predict the fire resistance duration of 

adhesively bonded anchors. Thus, the work consists in comparing the model results with the 

experimental results. For this purpose, a full-scale fire test was performed on the Vulcain furnace of 

CSTB (Champs-sur-Marne, France) on the same structure described in section 4 (Fig. 15). The test 

specimen was instrumented by thermocouples, displacement sensors, digital stereo images correlation 

system and inclinometers, in order to study the phenomena occurring in the structure during fire 

exposure. The fire test highlighted a vertical displacement of the slab towards the outside of the furnace 

during the first minutes of the test, caused by the differential thermal expansion due to the large thermal 

gradient present between the exposed and non-exposed surfaces of the slab. Starting from the 28th minute 

of fire test, the slab started falling progressively inside the oven and collapsed exactly after 117 minutes 

of ISO fire exposure. Finally, the fire test allowed to measure the real fire resistance duration of the 

studied structure, and showed that the collapse was mainly caused by the rebars sliding under the effect 

of heat. The load applied to each anchor was determined analytically and was around 48 kN (± 3 kN). 
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Fig. 15: Full-scale fire test on a concrete cantilever slab connected to a concrete wall by chemical anchors performed on the 

Vulcain furnace (CSTB, Champs-sur-Marne, France) 

Details of instrumentation, phenomena interpretation and mechanical and thermal calculations are 

presented in another paper dedicated to the full-scale fire test performed on the studied cantilever 

concrete slab (under review). 

Fig. 16 presents the evolution of the anchor fire resistance during the exposure of the studied structure 

to the ISO 834-1 fire. The fire resistance curves shown in Fig. 16 are plotted by determining the 

maximum axial force supported by the anchor at different times of fire exposure calculated using the 

numerical shear-lag and the resistance integration models.  In fact, the calculation of the anchor load 

bearing capacity at a time t of fire exposure, using the shear-lag model, consists in determining the 

maximum axial force reached considering a thermal profile relative to a given time of fire exposure 

(taking into account the bond stress-slip relationship). The determination of the anchor load bearing 

capacity at time t using the resistance integration method is detailed in separate paper. It consists in 

integrating, over the entire embedment length, the maximum resistance 𝜏𝑚𝑎𝑥  of all elements of the 

anchor, generated by the corresponding thermal profile. This method is used for the fire design of 

chemical anchors according to the EAD 330087-00-0601 [33]. 

Fig. 16 shows that the values of the anchor load bearing capacity provided by the shear-lag model and 

by the resistance integration method are close. Indeed, as noted in section 4, when the anchor reaches 

its bearing capacity, all the anchor elements reach their maximum bond stress 𝜏𝑚𝑎𝑥 at the same time. 

Consequently, the two methods provide close results.  
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Fig. 16: Anchor fire resistance evolution calculated by Shear-lag and by resistance integration method 

The fire resistance duration of chemical anchors is determined by the intersection between the anchor 

load bearing capacity evolution curve and the applied load curve. The Fig. 16 shows that the fire 

resistance duration predicted by the shear-lag model is 125 minutes (± 5 min) and the one predicted by 

the resistance integration method is 120 minutes (+ 16 min, -6 min). However, the fire resistance 

duration measured experimentally is 117 minutes, which is close to those predicted by the two methods.  

These results confirm the efficiency of the non-linear shear-lag model, presented in this paper, in 

determining the stress distribution along the anchor and in predicting the fire resistance duration of 

chemical anchors. 

Conclusion 

This paper presents a non-linear shear-lag model adapted to the mechanical problem of chemical 

anchors. The model allows the description of the axial and bond stress profiles, as well as the slip profile 

along the anchor for any temperature distribution. This model also allows the prediction of the moment 

of the initiation of the bond damage, leading to a decay in the anchor mechanical properties. The paper 

proposes a new solution to calculate automatically the length of the damaged portion of the bond, by 

solving the shear-lag differential equation in imposed displacement mode. The paper shows also that the 

stress distribution can be determined analytically when the temperature is uniformly distributed along 

the anchor by using simple cohesive laws. However, in case of a non-uniform temperature distribution, 

the resolution requires the use of numerical methods. 

The shear-lag model showed that the stress distribution along the anchor depends on the temperature 

profile.  Indeed, when temperature increases uniformly along the anchor, the axial stress profile becomes 

linear and the bond stress becomes uniformly distributed over the anchor elements. However, in case of 

a thermal gradient, the axial stress profile follows a logarithmic trend and the bond stress concentrates 

in the coldest zones of the anchor. 

The comparison of the fire resistance duration predicted by the shear-lag model with that measured 

experimentally and that predicted by the resistance integration method presented in [33] shows that the 

shear-lag model correctly predicts the fire resistance of chemical anchors. In addition, the shear-lag 

model shows that when the anchor reaches its maximum axial force, all the elements composing the 

anchor provide their maximum performance at the same moment. This observation confirms and 

validates the assumptions on which is based the determination of the fire resistance duration of chemical 

anchors using the resistances integration method. 
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In conclusion, the shear-lag model presented in this paper highlight the influence of the temperature 

variation on the mechanical behavior of chemical anchors and allowed to explain the ruin propagation. 

Moreover, in comparison with the resistance integration method results, the shear-lag model shows that 

taking into account the displacements compatibility between the anchor elements does not change much 

the predicted value load bearing capacity of the anchor for the geometry and mortar that was considered 

in this paper. 

Nevertheless, several developments can be made on the shear-lag model presented in this paper in order 

to improve its accuracy. Indeed, the model considers the steel rebars as smooth rods and does not take 

into account the effect of the ribs, nor the non-axiality of the rebar. In addition, the model does not take 

into account the non-negligible effects of the thermal expansion, which can modify the stress profile. 

Moreover, the model does not take into account the thermal history of the resin nor its long-term 

behavior (creep), which can induce important modifications on the stress profiles and in the fire 

resistance duration. 

Finally, the non-linear shear-lag model presented in this paper can be used to study the stress distribution 

along bonded anchors by offering the possibility to test new materials other than steel and concrete, such 

as the replacement of steel rebars by CFRP or GFRP, or the replacement of the concrete by solid wood 

or glued laminated timber. 
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