
HAL Id: hal-02270827
https://cstb.hal.science/hal-02270827

Submitted on 26 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic BIM Reasoner for the verification of IFC
Models

M. Fahad, Bruno Fies, Nicolas Bus

To cite this version:
M. Fahad, Bruno Fies, Nicolas Bus. Semantic BIM Reasoner for the verification of IFC Models. 12th
European Conference on Product and Process Modelling (ECPPM 2018), Sep 2018, Copenhagen,
Denmark. �10.1201/9780429506215-45�. �hal-02270827�

https://cstb.hal.science/hal-02270827
https://hal.archives-ouvertes.fr

Paper published in: Proceedings of the 12th European conference on product and process modelling (ECPPM 2018), Copenhagen,
Denmark, September 12-14, 2018, eWork and eBusiness in Architecture, Engineering and Construction - Jan Karlshoj, Raimar Scherer
(Eds) Taylor & Francis Group, [ISBN 9781138584136]

Semantic BIM Reasoner for the verification of IFC Models

M. Fahad
Experis IT, 1240 Route des Dolines, 06560 Valbonne, France

N. Bus & B. Fies
CSTB - Centre Scientifique et Technique du Bâtiment, 290 Route de Lucioles, 06560 Valbonne, France

ABSTRACT: Recent years have witnessed the development of various techniques and tools for the building

code-compliance of IFC models. Indeed these are great efforts, but, still there is a gap for the fully automatic

building code-compliance. This paper presents our research and development of Semantic BIM Reasoner

(SBIM-Reasoner) which employs semantic technologies to meet the requirements of semantic verification of

an IFC model. SBIM-Reasoner employs several preprocessors (IFC to RDF converter, Geometry Extractor) to

build the semantic repository from the input IFC model. Once all the triples are generated from the initial

data (.ifc file), Stardog is used to build a knowledge graph for the semantic verification. All types of inference

and reasoning mechanisms for the semantic verification are applied over this knowledge graph to meet the

requirements of verification. Knowledge graph over triplets enables freedom of extending RDF based

Semantic IFC model, creation of newer vocabulary and formation of newer rules, concatenation of triplets to

build rules with condition and constraints over IFC data, dynamic reasoning over the triplets based on the

initial data of IFC model, etc. Finally, we tested our prototype by using several online IFC models. We conclude

that semantic technologies provide more rich mechanisms and answer vast types of queries for the

verification of IFC models. It provides powerful features based on SPARQL libraries and serves best for the

automated code compliance and verification of IFC models.

1 INTRODUCTION

Building Information Modeling1 (BIM) is to
understand a building through the usage of a
digital model which draws on a range of data
assembled collaboratively before, during and after
construction [1]. BIM with its interoperability
properties is intended to facilitate exchanges and
handovers between different stakeholders.
Whereas the visualization and geometric
representation are intrinsic to the digital building
model, the fields of quality requirements,
evaluation and regulatory contextualization
(destination, named areas, threshold values,
certified data, evidence of compliance, etc.) need
higher level of maturity [2]. Industry Foundation
Classes (IFC), based on a neutral format, is a
complete and fully stable open and international
standard for exchanging BIM data [3]. Code
Compliance checking of BIM is necessary in order
to provide stake-holders a high quality IFC model

1 Open BIM, http://www.buildingsmart.org/openbim/

that ensures accurate, consistent and reliable
results in the entire life-cycle of BIM. Verification
of IFC models for the code compliance checking is
one of the hot challenges of the present decade.
Different approaches and tools are already
contributed for the automated code compliance
checking [4].
Our enterprise, CSTB, through its research aims at
automating French Building Code Compliance as
much as possible, or at least improves the control
of regulations from a digital model design phase.
Its goal is to provide automatic requirements
verification to warn the non-conformities with the
associated 3D visualization, or to provide access to
the technical documentation for a given digital
model based on its sophisticated contextual
information. This paper presents our several
contributions towards this research. First, we
analyze literature review regarding verification of
IFC models and conclude that there are vast
research works in this field, but still there are

http://www.buildingsmart.org/openbim/
http://www.buildingsmart.org/openbim/

many open challenges to address. Therefore, we
present a need of an approach that can easily be
extended, configured and deployed for the
dynamic and changing environment having broad
spectrum of functionalities for the verification of
IFC models.
The main contribution of this paper is about the
development of Semantic BIM Reasoner (SBIM-
Reasoner) which employs semantic technologies
to meet the requirements of semantic verification
of an IFC model. SBIM-Reasoner employs several
preprocessors (elaborated in next sections) to
build the semantic repository based on RDF [25]
from the input IFC model. Once all the triples are
generated from the initial data (.ifc file), it uses
Stardog2 to build a knowledge graph for the
semantic verification. All types of inference and
reasoning mechanisms for the semantic
verification are applied over this knowledge graph
to meet the requirements of verification, and in
addition to discover additional information that is
not explicitly stated in the initial data of the IFC
model. Our semantic preprocessor uses both
forward chaining and backward chaining
mechanisms (where appropriate) to build the
semantic repository. SPARQL3 rules (statements
and materialization) are applied to enrich the
underlying semantic repository with several
newer and high level concepts as per demand of
regulation texts and verification rules by the end-
users. Finally, SPARQL queries are performed over
the semantic repository for the verification and
code compliance of an IFC model. Once, SBIM-
Reasoner finds non-compliant objects in the IFC
model, it presents them to the end-user. Later in
this paper, we also present our analytical results
on several online IFC models4 and also on four IFC
models developed at our enterprise. We discuss
our experimental finding on different analysis
parameters such as number of triplets in the RDF
(turtle file) equivalent to IFC model, number of
triplets in the semantic model (filtered turtle file)
in the Stardog, estimated time taken by the
conversion and geometric preprocessor, etc. On
the basis of analysis from these parameters, we
show encouraging results by several tests on the
knowledge graph from the initial version of SBIM-
Reasoner.
The rest of paper is organized as follows. Section 2

discusses related work. Section 3 presents our

2 Stardog triplestore: https://www.stardog.com/
3 SPARQL http://www.w3.org/TR/rdf-SPARQL-query/

SBIM-Reasoner, its architecture, subcomponents,

and as a semantic service to end-users. This

section also presents our statistical analysis of our

implemented prototype, empirical results based

on various IFC models and highlights various

important points. Section 4 concludes the paper

and presents future directions

2 RELATED WORK

Over the last few years, many methods and
techniques have been proposed for the
verification of IFC models. There are three ways
for the conformance checking of IFC models as
discussed by Pauwels and Zhang [5]. The
subsections elaborate each of them.

2.1 Hard Coded Rule Checking

First, we have the hard coded rule checking
mechanism for the verification of IFC models,
which is similar to the approach adopted by Solibri
Model Checker [6]. This tool loads a BIM model,
considers rules stored natively in the application
and performs rule checking against the BIM for the
architectural design validations. This approach is
fast as rules are integrated inside the application,
but there is no flexibility or customization possible
as rules are not available outside the actual
application.
The traditional approach of compliance checking is

with the IfcDoc tool [7] developed by

buildingSMART International for generating

MvdXML rules through a graphical interface. It is

based on the MvdXML specification [22] to

improve the consistent and computer-

interpretable definition of Model View Definitions

as true subsets of the IFC Specification with

enhanced definition of concepts. This tool is

widely used as AEC specific platform in the

construction industry. MvdXML Checker [27] is a

great contribution for the automatic verification of

IFC models and to detect the non-conformities

with the associated 3D visualization, or to provide

access to the technical documentation for a given

digital model based on its sophisticated contextual

information. At our enterprise, we proposed

4 IFC test Data
https://github.com/opensourceBIM/TestFiles/tree/master/T
estData/data

https://www.stardog.com/
https://www.stardog.com/
http://www.w3.org/TR/rdf-SPARQL-query/
http://www.w3.org/TR/rdf-SPARQL-query/
https://github.com/opensourceBIM/TestFiles/tree/master/TestData/data
https://github.com/opensourceBIM/TestFiles/tree/master/TestData/data
https://github.com/opensourceBIM/TestFiles/tree/master/TestData/data
https://github.com/opensourceBIM/TestFiles/tree/master/TestData/data

several extensions and implemented those into a

new research prototype. But after these

extensions, still we analyze that this traditional

approach of verification by the use of MvdXML is

very limited and has narrow scope for the

verification of IFC models. There are many

drawbacks of MVDXML for extracting building

views such as: lack of logical formalisms, solely

consideration of IFC schema and MVD-based view

constructors are not very flexible and dynamic

[23]. In addition, major limitations exists such as

restricted scope of applying conditions and

constraints on several branches of an IFC model,

poor geometric analysis of an IFC model, lack of

mathematical calculations, support of only static

verification of a model, etc. On the other hand,

when we practice semantic technologies such as

SPARQL, we think their suitability due to wide

range of functions, intermediate calculations, and

support of dynamic creation of verification rules at

ease.

2.2 Query based Rule Checking

The second approach is ‘query based rule
checking’ of an IFC model. In this approach, BIM is
interrogated by rules, which are formalized
directly into SPARQL queries. As an example,
Bouzidi et al. [8] proposed this approach to ease
regulation compliance checking in the
construction industry. They reformulated the
regulatory requirements written in the natural
language via SBVR, and then, SPARQL queries
perform the conformance checking of IFC models.

2.3 Semantic Rule Checking Approach

The third is a semantic rule checking approach
with dedicated rule languages such as SWRL [24],
Jess [9] or N3Logic [10]. There are few projects in
AEC industries that use this approach for the
formal rule-checking, job hazard analysis and
regulation compliance checking. Wicaksono et al.
[11] built an intelligent energy management
system for the building domain by using RDF
representation of a construction model. Then,
they formulated SWRL rules to infer anomalies
over the ontological model. Later, they also
developed SPARQL interface to query the results
of rules. Pauwels et al. built acoustic regulation
compliance checking for BIM models based on
N3Logic rules [12]. They use N3logic rules with an

ontology to reason whether a construction model
is compliant or not with the European acoustic
regulations. Another project that was built on the
ontological framework for the rule-based
inspection of eeBIM-systems was developed by
Kadolsky et al. [13]. They used rules to query an
IFCOWL ontology that captured a building.
Besides these projects that build an ontology for
the IFC, recent years revealed some contributions
based on Semantic Web Technologies. SWOP-
PMO project is one of recent contributions that
uses formal methodology based on the Semantic
Web standards and technologies [14]. It uses
OWL/RDF to represent the knowledge, and
SPARQL queries and Rule Interchange Format (RIF)
to represent the rules. The RDF/OWL
representation is not derived from the written
knowledge but has to be remodeled in accordance
with the rules of OWL/RDF. There are some other
works for the semantic enrichment of ontologies
in the construction and building domain. Emani et
al. proposed a framework for generating an OWL
Description Logic (DL) expression of a given
concept from its natural language definition
automatically [15]. Their framework also takes
into account an IFC ontology and the resultant DL
expression is built by using the existing IFC
entities. Fahad et al. have contributed a
framework for mapping certification rules over
BIM to enable the compliance checking of the
repository through the digital building model [16].
They aimed to align several specialized
indexations of building components at both sides,
by extending IfcOWL ontology with bSDD
vocabulary (i.e., synonyms and description) as
enriched IfcOWL ontology to deal with the same
abstract concepts or physical objects. Fahad et al.
also investigated semantic web approach by using
SWRL and traditional approach by the use of
IfcDoc tool and analyzed that the semantic web
technique represents more global scope with
larger visibility of querying for the validation of IFC
models [17]. Ontologies play a vital role for the
rule based semantic checking, therefore in the
next subsection to mention some of the important
ontologies in the IFC domain.

2.3.1 Ontologies in the IFC domain

To achieve the benefits of ontologies, there are
many efforts to build an ontology for the IFC
construction industry. One of the outcomes can be
seen as an IFC-based Construction Industry
Ontology and Semantic web services framework

[18]. With simple reasoning built over the
ontology, their information retrieval system could
query the IFC model into XML format directly. The
BuildingSMART Linked Data Working Group has
developed IfcOWL ontology to allow ex-tensions
towards other structured data sets that are made
available using semantic web technologies [19].
There are many versions of IfcOWL ontology since
the work has been started. We have been work-
ing on an ontology IFC4_ADD1.owl that came on
25 Sept. 2015. We have enriched this ontology
with English-French and IFC vocabulary
(synonyms, descriptions, etc.) from bSDD
semantic data dictionary in our research project
where we map regulatory text and certification
rules over BIM [16]. In addition, we assigned
concepts of IfcOWL ontology with Global Unique
Identifier (GUID) to serve as a unique language-
dependent serial number from the bSDD. There
are some other ontologies as well such as the
ontology defining the core concepts of a building
named Building Topology Ontology (BOT) [20] and
the ontology for CAD Data and Geometric
Constraints named OntoBREP [21].

3 SEMANTIC BIM REASONER

This section presents our research and
development towards building Semantic BIM
Reasoner. The following subsections elaborate it’s
various aspects.

3.1 SBIM-Reasoner Architecture

Semantic BIM Reasoner (SBIM-Reasoner) deploys

many preprocessors for building semantic

repository for the verification of IFC models (see

Figure 1). Primarily it has three pre-processors,

i.e., IFC to RDF Converter, Geometry Extractor, and

Semantic Preprocessor which has further sub-

components named IFCOWL Ontology sub-graph,

SPARQL Rules, SPARQL Queries and TripleStore.

Figure 1. Top level Architecture of SBIM-Reasoner

3.1.1 IFC-to-RDF Converter+Filter

It is necessary for the semantic reasoner to con-
vert IFC into RDF for building the semantic
repository. IFC-to-RDF is a set of reusable Java
component that allows parsing IFC files and
converts them into RDF graphs. Our system
deploys modified version of IFC-to-RDF conversion
plug-in provided by Pauwels & Oraskari [26]. After
conversion, underly-ing RDF acts as a foundation
stone to execute all the verification rules.
Therefore, we did filtration to get only relevant
triplets from the IFC model. Generally there are
two ways to get filtered model. First to get full RDF
equivalent of IFC model and then apply SPARQL
Construct query to get small graph of only wanted
IFC classes. In this approach we found over-head
of creating full graph and then extracting a sub-
graph. Second, which we adopted is to integrate
IF-Then-Else statements inside the code of
Pauwels to filter unwanted elements like IFC
classes {Person, Address, MaterialList,
SwitchingDeviceType, ColourRgb, etc.}. By this
filtration, we have noted that we got filtered RDF
model which is 10 times smaller in size as
compared to full RDF (equivalent IFC) model. Table
1 shows the comparison between RDF files, i.e.,
RDF equivalent IFC and Filtered RDF.

3.1.2 Geometry Preprocessor

There are two geometry render engine plugins

available with the BIM Server named

IFCOPENSHELL and IFC Engine DLL. These are

helpful to extract geometry data about the IFC

objects. The outputs of this preprocessor are the

RDF triplets which are formed from the extracted

geometry data of relevant IFC objects. Table 2

shows the statistics of IFC objects present in the

IFC models.

Table 1. Comparison between RDF Files (Equivalent IFC vs. Filtered RDF)

Table 2. Statistics of IFC objects in IFC models

3.1.3 IFCOWL ontology sub-graph

As the standard IFCOWL ontology has a very large
set of IFC elements, therefore, we deal with the
sub-graph to achieve better processing and
querying performance.

3.1.4 SPARQL Rules - Statements

We have created a large set of SPARQL rules, i.e.,

statements. In fact, these statements are

shortcuts overs the long chain of triplets to enable

simplicity. For instance, we created In_Storey

shortcut over the RDF triplets via relatedObjects

and relatingObjects between IFC elements (see

Figure 2). Likewise Boundary statement is created

as a shortcut over the RDF triplets via

relatingSpace and relat-edBuildingElement. These

statements promote readability,

understandability and enable simplicity when

creating SPARQL rules and queries. Otherwise the

chain of triplets makes things complex and

ambiguous.

Figure 2. Examples of Statements over triplets

3.1.5 SPARQL Queries - Materialization

During the analysis of rules specification, we come

across various types of vocabulary (introduced by

regulatory texts) during building code compliance

application. This vocabulary is composed of high

level concepts present in business rules and

regulation texts which are familiar by the

stakeholders of BIM. There are two methods to

build such vocabulary of newer high-level

concepts, i.e.; via forwarding chaining and/or

backward chaining. Based on the SPARQL rules, we

have built SPARQL queries to introduce high level

concepts based on the primary IFC vocabulary by

using both forward and backward chaining where

applicable. Figure 3 shows high level concepts

‘circulationHorizontale’ and ‘Degagement’ in our

case study of building French code compliance via

forward chaining. In these examples we have used

our defined inStorey and boundry concepts along

with the pre-defined IFC owl terminologies such as

IfcOpeningElement, IfcSpace.

Figure 3. Examples of Forward Chaining SPARQL

Queries

Backward chaining consists of ontology

statements that align IFC concepts with regulatory

concepts, whereas forward chaining consists of

insert statements that create supplementary

triplets. Forward chaining is a good at an

implementation stage to save memory and CPU

resources. From the ma-chine point of view,

backward chaining is processed each time a

semantic query is submitted whereas forward

chaining is executed each time the data changes.

At this stage, this choice is a compromise between

effective queries (forward chaining is more

appropriate for complex and numerous queries)

and model update frequency (backward chaining

is more appropriate when data changes

frequently). We can even say that it is a

compromise between the amount of triplet

(considering triplet generated by forward chaining

statements) and the ontology complexity.

Therefore, we have mixed both approaches Back-

ward and Forward chaining to provide the optimal

setting that minimizes response time and

maximizes ontology consistence. With the help of

these techniques, we have simplified several IFC

patterns such as classifications, predefined types,

properties, geometry, topology, etc.

3.1.6 TripleStore - Stardog

Although IFC is an open standard; its complex

nature makes information retrieval difficult from

an IFC model as the size of IFC model grows.

Therefore, we have used Stardog as a triplestore

to build our semantic model. Querying semantic

model is faster and gives a good runtime. When

the application starts, an end-user provides an IFC

model and the set of SPARQL queries which are

the verification rules for checking code

compliance of desired IFC model. As a result, our

system converts IFC file into filtered RDF model. It

loads that converted-filtered IFC equivalent RDF

into stardog. After triplets concerning geometry

are added to capture geometrical information in

the triplestore. Then the semantic model is

enriched with IFCOWL basic vocabulary, i.e., sub-

graph of IFC ontology. Then, it adds SPARQL rules

into the triplestore. Finally, it executes our project

specific forward chaining SPARQL queries which

creates high level vocabulary and builds further

RDF graphs over the existing triplets. With

reference to above examples, our semantic

preprocessor is illustrated in Figure 4 based on the

basic IFC vocabulary, shortcuts and constructs.

Figure 4. Example of Construction of Semantic

Preprocessor

3.1.7 End-User Queries

Stardog provides fast access to triplets to fetch
data to validate IFC models. All the end-user
verification queries are executed on the top of
final stardog triple store which is built successively
by our reasoner. For example if an end-user needs
to check whether a Room in the IFC model is
accessible by a wheelchair, then it can be done
easily by using above explained
construct_degagement where the value of IfcDoor
must be equal or greater than 90 cm. An end-user
may apply SPARQL ASK and DESCRIBE queries to
retrieve relevant information regarding the
verification rules. Instead of using IfcDoc tool
where there is no intermediate state and no
explanation for the reason of non-compliance, we
use SPARQL DESCRIBE Queries. The SPARQL
DESCRIBE query does not actually return
resources matched by the graph pattern of the
query, but an RDF graph that "describes" those
resources. It is up to the SPARQL query service to
choose what triples are included to describe a
resource. Therefore, SPARQL queries serve best by
concatenating desired triplets for building
verification rules to check the code compliance.

3.2 SBIM-Reasoner as a semantic service

We have developed SBIM-Reasoner as a semantic

service inside a KROQI platform5. As it is developed

especially for the French building code compliance,

therefore our web interface is also in French

targeting French community. When the

application starts, an end-user has to configure IFC

input model by clicking under the synchronization

button on the very first tab ‘Maquette’. Then an

end-user selects the set of rules to be verified on

this input model by selecting/browsing their set of

rules on the second tab ‘Protocoles’. Then our web

service starts by calling semantic reasoner which

computes the set of rules and redirects to the

result page ‘Résultats’. Each of the rule is

highlighted as green or red color depending on its

status of compliance (see Figure 5).

5 https://svc-bimsemchecker.dev.coplus.fr/CheckerService-
/v2/ui?file_id=test_20180302_NR_LibertyLoft_OK

Figure 5. Result Page containing status of

Verification Rules

When SBIM-Reasoner has detected non-compliant

objects (in case of red status), an end-user can

further analyze them by clicking on the

corresponding row. It fetches and displays the list

of IFC non-compliant objects containing Name,

GUID and Type of each IFC object (see Figure 6).

One can also export PDF and BCF files to analyze

their results in detail.

Figure 6. List of non-compliant IFC objects

3.3 Testing IFC Models

We have used several IFC models from the online
repository (see url above) to test our Semantic
BIM Reasoner. These IFC models vary in size,
number of IFC objects, free spaces, etc. We have

also used four IFC models developed at our CSTB
enterprise named Bat_CSTB (14.9 MB),
HAixFlowCtrl (13.1 MB), Maquette Test Checker
(11.2 MB) and Liberty (12.2 Mb). Above in Tables
1 and 2 we have shown statistics about these IFC
models. We have also measured time taken by the
Converter Preprocessor that does conversion and
filtration to produce the initial RDF semantic
model on a ‘quad core i5 CPU at 2,5Ghz’ machine.
In addition, we have also measure time taken by
the Geometry Preprocessor that extracts
geometry data of our desired IFC elements (ref.
Table 2) from the IFC models. Figure 7 shows the
estimated time taken by the conversion and
geometry preprocessors. When we see the time
graph, we observe that SBIM-Reasoner took less
than a minute by both the preprocessors to
achieve their objectives when the size of IFC
model is under 15 MB. But when the size of IFC
model is 62 MB (in case of huge IFC model Hitos)
then it took almost 3.4 minutes to convert and
filter, and more than 5 minutes to extract
geometry data. Here, we also mention that
although preprocessors took time to build
semantic model at the first time, but querying for
the verification of IFC models are processed fast
and a good runtime is achieved. On the other hand
on traditional IFC model, it takes much time to
verify each of the individual rule. In addition, we
are not able to execute all types of rules as per our
desire due to narrow scope of IFC tools available
online. This is only with the semantic model that
we are flexible enough to fetch any triplets and
build rules according to our will for the verification
of IFC models. On the basis of this analysis, we
conclude that semantic model serves best for the
verification of IFC models. We also revealed
encouraging results via several tests from the
initial version of SBIM-Reasoner.

4 CONCLUSIONS

There are many techniques for the automatic

verification of IFC models, but, still there are many

open challenges. In this paper, we have presented

a semantic approach that can easily be extended,

configured and deployed for the dynamic and

changing environment having broad spectrum of

functionalities for the verification of IFC models.

We presented SBIM-Reasoner that builds

semantic model by con-verting IFC model into RDF

and also extracting geometry data as a set of

triplets. Then, it loads this semantic RDF data into

Stardog triplestore, and enriches the primary

semantic model with our defined SPARQL Rules

(shortcuts overs long chain of triplets) and Queries

(regulation and business rules). End-user queries

are formalized as SPARQL queries which are

executed on the top of this final triplestore. SBIM-

Reasoner responds their status of compliance

along with the BCF representation of non-

compliant IFC objects. We demonstrated several

test models on SBIM-Reasoner and presented its

efficiency and efficacy with empirical results. We

conclude that the semantic model based on the

semantic web technology is a good compromise

between development efforts and opportunities.

The graphical representation of RDF allows rules

to be more intuitive and more efficient to reason

and execute. Concatenation of triplets allows

flexibility of making wide range of verification

rules with condition and constraints at ease.

SPARQL has a global scope with larger visibility of

querying with the built-in functions and support of

intermediate calculations for the validation of IFC

models.

Figure 7. Time taken by preprocessors (Converter and Geometry Extractor)

References

[1] Rebekka, V., Stengel, J. & Schultmann, F. 2014.
"Building Information Modeling (BIM) for existing
buildings—Literature review and future needs."
Automation in construction, vol. 38, pp. 109-127.

[2] Eastman, C., Teicholz, P., Sacks, R. & Liston, K.
2008. “BIM Handbook: A Guide to Building
Information Modeling for Owners, Managers,
Designers, Engineers, and Contractors”, Hoboken,
New Jersey, Wiley.

[3] Thein, V. 2011. Industry Foundation Classes (IFC),
BIM Interoperability Through a Vendor-Independent
File Format, A Bentley White Paper, September 11.

[4] Ismail, A.S., Ali, K.N. & Iahad, N.A. 2017. "A
Review on BIM-based automated code compliance
checking system," 2017 International Conference on
Research and Innovation in Information Systems
(ICRIIS), Langkawi, pp. 1-6.

[5] Pauwels, P. & Zhang, S. 2015. “Semantic Rule-
Checking for regulation compliance checking: An
overview of strategies and approaches”. Proc. of the
32nd CIB W78 Conference, Netherlands.

[6] Khemlani, L. 2009. “Solibri model checker”,
AECbytes Product Review 31st March 2009.

[7] IfcDoc Tool, available at:
http://www.buildingsmart-tech.org/specifications/
specification-tools /ifcdoc-tool/ifcdoc- help-page-
section/IfcDoc.pdf, 2012.

[8] Bouzidi, K.R., Fies, B., Faron-Zucker, C., Zarli, A. &
Thanh, N.Le. 2012. “Semantic Web Approach to Ease
Regulation Compliance Checking in Construction
Industry”. Future Internet. 4 (3). pp. 830-851.

[9] Friedman-Hill, E. 2003. “Jess in Action: Rule Based
Systems in Java”. Manning Publications. ISBN 1-
930110-89-8.

[10] Berners-Lee, T.I.M., Connolly, D.A.N., Kagal, L.,
Scharf, Y. & Hendler, J.I.M. 2008. "N3Logic: A logical
framework for the World Wide Web", Theory and
Practice of Logic Programming. 8 (3),
doi:10.1017/S1471068407003213.

[11] Wicaksono, H., Dobreva, P., Häfner, P. &
Rogalski, S. 2013. “Ontology development towards
expressive and reasoning-enabled building
information model for an intelligent energy
management system”. Proc. of the 5th KEOD, pp. 38-
47. SciTePress,

[12] Pauwels, P., Deursen, D.Van, Verstraeten, R.,
Roo, J.De, Meyer, R.De, De-Walle, R.Van, & Van-
Campenhout, J. 2011. “A semantic rule checking
environment for building performance checking”.
Automation in Construction. 20 (5). pp. 506-518.

[13] Kadolsky, M., Baumgärtel, K. & Scherer, R.J.
2014. An ontology framework for rule-based

inspection of eeBIM-systems. Procedia Engineering.
vol. 85, pp. 293-301.

[14] Josefiak, F., Bohms, H., Bonsma, P. & Bourdeau,
M. “Semantic product modelling with SWOP’s PMO,
eWork and eBusiness in AEC”, pp.95-104

[15] Emani, C.K., Ferreira Da Silva, C., Fiès, B.,
Ghodous, P. & Bourdeau, M. 2015. “Automated
Semantic Enrichment of Ontologies in the
Construction Domain”. Proc. of the 32nd CIB W78
Conference, Netherlands,

[16] Fahad, M., Bus, N. & Andrieux, F. 2016 “Towards
Mapping Certification Rules over BIM”, Proc. of the
33rd CIB W78 Conference, Brisbane, Australia, 2016.

[17] Fahad, M., Bus, N. & Andrieux, F. 2016, “SWRL
Towards Mapping Certification Rules over BIM”,
Proc. of the 33rd CIB W78 Conference, Brisbane,
Australia

[18] Zhang, L. & Issa, R.R. 2011. “Development of IFC-
based Construction Industry Ontology for
Information Retrieval from IFC Models”,
International Workshop on Computing in Civil
Engineering, Netherlands, Vol. 68.

[19] Terkaj, W. & Pauwels, P. 2014. “IfcOWL ontology
file for IFC4”, Available at:
http://linkedbuildingdata.net/resources/IFC4_ADD1
.owl

[20] Rasmussen, M.H., Schneider, G.F. & Pauwels, P.
Building Topology Ontology (BOT),
https://github.com/w3c-lbd-cg/bot

[21] Perzylo, A.C., Somani, N., Rickert, M. & Knoll, A.
2015. An ontology for CAD data and geometric
constraints as a link between product models and se-
mantic robot task descriptions. In proceedings of
IROS’15: 4197-4203E.

[22] Chipman, T., Liebich, T. & Weise, M. 2012.
“mvdXML specification of a standardized format to
define and exchange MVD with exchange
requirements and validation Rules”, version 1.0.

[23] Mendes de Farias, T., Roxin, A. & Nicolle, C.
2016. “A Semantic Web Approach for defining
Building Views”, buildingSMART Summit Jeju, Korea.

[24] Horrocks, I., Patel-Schneider, P.F., Boley, H.,
Tabet, S., Grosof B. & Dean, M. 2004. “SWRL: A
Semantic Web Rule Language Combining OWL and
RuleML”.

[25] Brickley, D., Guha, R.V. & McBride B. 2004. “RDF
vocabulary description language 1.0: RDF Schema”.
W3C Recommendation 2004.

[26] Pauwels, P. & Oraskari, J., “IFC-to-RDF
Converter” https://github.com/IDLabResearch/IFC-
to-RDF-converter

[27] MvdXMLChecker, available at:
https://github.com/opensourceBIM/mvdXMLCheck
er

https://github.com/IDLabResearch/IFC-to-RDF-converter
https://github.com/IDLabResearch/IFC-to-RDF-converter
https://github.com/IDLabResearch/IFC-to-RDF-converter
https://github.com/IDLabResearch/IFC-to-RDF-converter
https://github.com/opensourceBIM/mvdXMLChecker
https://github.com/opensourceBIM/mvdXMLChecker
https://github.com/opensourceBIM/mvdXMLChecker
https://github.com/opensourceBIM/mvdXMLChecker

