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1. ABSTRACT 

Many research and development studies use virtual buildings represented by building thermal 

models at a detailed level. Such models need relatively long computation times for one-year 

simulations: the use of these tools is then often too time-consuming when it comes to compare 

technical solutions during the design stage. Model reduction methods allow models with 

shorter computation times to be synthesized. In this paper, the linear state-space 

representation of a whole model is extracted and a balanced truncation method is applied to it. 

The detailed models are built from the SIMBAD library, a Simulink library of building 

modeling components developed at CSTB. Both linear state-space and reduced order models 

ensure shorter computation times than the full detailed model. However, the choice of the 

order of the reduced model has an impact on the final results. The main strengths and 

weaknesses of using the linear state-space and reduced models built from the same detailed 

model are investigated. To this end, the physical descriptions of idealized test buildings 

provided by ASHRAE standard 140 for building simulation tools assessment are used, and the 

results obtained through the different approaches for computation time reduction are 

compared.  

Keywords: thermal model, model order reduction, computation time, spectral analysis 

2. INTRODUCTION 

In 2012, commercial and residential buildings accounted for 44% of the final energy 

consumption in France and were responsible for 21% of Greenhouse Gas Emissions (Ademe, 

2013). Among this consumption, heating and cooling systems stand for a large share (59%, 

(Ademe, 2013)). Therefore, reducing energy consumption requires the improvement of 

HVAC (Heating, Ventilation, Air Conditioning) systems efficiency. There are two ways to 

reach this goal. First, replacing old systems with high efficiency systems increases energy 

performance (Visier, 2008). Secondly, control methods allow to adapt the system operation to 

match occupants’ needs or renewable energy production ((Visier, 2008),(“Energy future, 

Think Efficiency,” 2010)) and reduce energy waste. 

Modelling innovative systems, complex distribution networks or control strategies for design 

and optimization purposes require detailed models and often short time steps. This can lead to 

long computations, hardly affordable during the design stage or for embedded control models. 

The SIMBAD (SIMulator of Building And Devices) library, developed at CSTB 

(Husaunndee, Lahrech, Vaezi-Nejad, & Visier, 1997), is composed of a set of 

Matlab/Simulink components enabling user to build dynamic models of buildings, their 

systems and especially their control strategies. The components of this library will be used in 

this paper. 

Simulating buildings with this level of detail leads to much longer computation times than 

static hourly models. In SIMBAD’s case, an annual simulation of a mono-zone building takes 
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approximately 130s with a fixed time step Δ   20s. Consequently, and considering even 

longer simulations when all production, distribution and emission systems are modelled, 

using such detailed models during the design stage may be difficult. It could then be useful to 

implement methods which reduce computation time while keeping sufficiently accurate 

results. The building envelope model considered in this paper will not take into account air 

transfer or non-linearized radiative transfers, but still shows a nonlinear behaviour regarding 

long wave radiations through windows. 

The concern in this paper is to evaluate the performances of reduced models. On the one 

hand, the computation time saved with a reduced order model, and on the other hand, the 

accuracy difference between the results of detailed, linearized and reduced order models. 

Section 5 is dedicated to the problem of evaluating how well linearized or reduced order 

models perform with respect to the original detailed model. 

In order to evaluate the detailed and reduced order building models on reference cases, the 

reference buildings used are those described by ASHRAE Standard 140-2001 

(“ANSI/ASHRAE Standard 140-2001, Standard method of test for the evaluation of building 

energy analysis computer programs,” 2001). It defines test procedures for evaluating 

capabilities of building energy programs. In fact, it gives a physical description of different 

buildings and the predictions from well-known programs (such as TRNSYS, DOE-2 or 

S3PAS) applied to them. Some of these test cases were implemented to compare synthesized 

models with the SIMBAD detailed model. 

Section 3 will introduce the SIMBAD models used as the detailed modelling level. In section 

4, the linearization and common model order reduction methods will be presented. Section 5 

clarifies the mobilized benchmarks indicators. Benchmark results will be presented and 

discussed in section 6. Finally, a variant of the order reduction method will be tested to 

improve its performance in section 7. 

3. DETAILED SIMBAD MODEL 

The SIMBAD multi-zone building model is a white box model where each component (zones, 

walls, windows …) is described by a set of physical parameters. It includes a dynamic model 

of each wall surface and zone air temperature. 

SIMBAD models are built using Simulink. Each component has inputs and outputs that are 

connected to create the whole model. Two cases are set up. The first one is the free floating 

case (indoor building temperature is not controlled, Figure 1). The second one is the regulated 

case (indoor building temperature is regulated using a PID controller, Figure 2).  

 

 

 

 

 

 

Multi-
zone 

SIMBAD 
model 

 

Solar 
processor 

 

𝑻   ,  𝑻    (°𝑪) 

𝑷   ,   , 𝑷   ,     (𝑾) 

𝜸,𝜳 

𝝋   ,    (𝑾/𝒎
 ) 

𝝋   ,     (𝑾/𝒎
 ) 

𝝋      

(𝑾/𝒎 ) 

𝑻   (°𝑪) 
 

Figure 1: Detailed SIMBAD model - Free floating case 



P001, Page 3 

 

9th International Conference on System Simulation in Buildings, Liege, December 10-12, 2014 

 

 

 

 

 

 

 

 

 

 

 

With: 

𝑇    : Outdoor temperature (°C) 

𝑇    : Sky temperature (°C) 

𝑃   ,   , 𝑃   ,     : Occupation convective power and occupation radiative power (W). 

𝛾,𝛹 : Solar height and azimuth (°) 

𝜑   ,   , 𝜑   ,     : Direct solar radiation and diffuse solar radiation (W/m ) 

𝜑     : Solar radiation projected on building surfaces (W/m ) 

𝑇    : Indoor temperature (°C) 

𝑃    ,     : Heating convective power (W). Positive for heating, negative for cooling. 

 

The solar processor block projects solar flows on surfaces of the building envelope. This 

block uses many trigonometric functions and is as such strongly nonlinear. 

The multi-zone block calculates indoor temperature by evaluating surface temperatures taking 

radiative, convective and conductive heat exchanges into account. 

The PID controller computes the heating convective power in order to reach the setpoint 

value. It is strongly nonlinear and won’t be subject to model order reduction.  

In the rest of this paper, the detailed model will be represented by the letter D. 

4. COMPUTATION TIME AND MODEL ORDER REDUCTION TECHNIQUES 

4.1 Linearization 

Linearization replaces any block or set of blocks with a State Space Model (SSM) block. 

Matlab function linmod extracts the SSM from a component by a numerical perturbation and 

gives four matrices: 𝐴, 𝐵, 𝐶, 𝐷. They allow writing the state space representation (1) of the 

model called in the following the linearized model (L). 

 

�̇�( )  𝐴𝑇( )  𝐵 ( ) 

   ( )  𝐶𝑇( )  𝐷 ( ) 
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Figure 2: Detailed SIMBAD model - Regulated case 
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With: 

𝑇( ): State vector 

  ( ): Output vector 

 ( ): Input vector 

𝐴: State matrix 

𝐵: Input matrix 

𝐶: Output matrix 

𝐷: Feedforward matrix. In this case, it is 

always null.  

This technique works by nature without any loss of precision when blocks are linear. 

There are two ways to apply this technique to the detailed building model:  

 The first one is the linearization of the multi-zone building block only. This block is 

then replaced with a SSM block but the solar processor is maintained. The resulting 

SSM block has 23 inputs. 

 The second one is the linearization of the assembly between the solar processor and 

the multi-zone block. As the solar processor is not linear, a simplification is made to 

make it linear: the sun position is set to a constant and becomes a model parameter. 

Then, the assembly is replaced with a SSM block. Solar radiations are adjusted to fit 

the initial solar radiation projected on the window. This SSM block requires 8 inputs. 

4.2 Model order reduction 

After projecting (1) on a particular basis, the system is truncated (2).  

�̇̃�( )  �̃��̃�( )  �̃� ( ) 

   ̃  �̃��̃�( ) 
(2)   

In the following parts, the notation    will stand for the outputs of linearized models as well as 

the outputs of the reduced order model. 

The order of (2) has decreased from (1). Several methods performing this reduction are 

available . One of the first method was the balanced truncation and appeared in the early 80’s. 

It was described by B.C. Moore in (Moore, 1981). Other methods followed in the same 

decade as the Hankel-norm reduction of Glover (Curtain & Glover, 1985) or whether the 

proper orthogonal decomposition described by Sirovich (Sirovich, 1987). Finally, in the 90’s, 

two other methods came out. The first one was explained by P. Feldmann in (Feldmann & 

Freund, 1995) and was related to Krylov subspaces and Padé approximation. The second one 

is called PRIMA and was the subject to the paper (Odabasioglu, Celik, & Pileggi, 1997). In 

this study, the balanced truncation is used. It has been applied in thermal building modelling 

since the mid-1990s. Dautin’s works (Dautin, 1997) or Déqué’s works (Déqué, Delille, & 

Dautin, 1997) can be quoted. More recently, other studies like (Kim & Braun, 2012) used this 

technique. 

The main idea is to delete states that have a small sensitivity to inputs (controllability) and a 

small impact on outputs (observability). The controllability gramian    (resp. observability 

gramian   ) characterizes the state’s controllability (resp. observability). It is shown (Bruq & 

Folliot, 1988) that they can be calculated by Lyapunov equations (3): 

 

𝐴     𝐴
  𝐵𝐵    

𝐴      𝐴  𝐶
 𝐶    

(3)   
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   and     depend on the basis where (1) is represented. It should be noted that a state can be 

sensitive to inputs and have a small impact on outputs at the same time. States thus cannot be 

deleted by considering the gramians only. Using a balanced representation overcomes this 

obstacle.  

It consists in applying a transform  𝑇( )  𝑃 ( ) to (1) such that the gramians of system (4) 

are equal. 

 ̇( )  𝑃  𝐴𝑃 ( )  𝑃  𝐵 ( ) 

   ( )  𝐶𝑃 ( ) 
(4)   

Palomo (Palomo, 2011) gives steps to establish 𝑃 : 

- 1
st
 step: Computation of    and    with (3) 

- 2
nd

 step: Calculation of   with Cholesky decomposition : 

      
  (5)   

where   is a lower triangular matrix. 

- 3
rd

  step: Diagonalization of        (symmetric, positive definite) obtained by 

solving the following symmetric eigenvalues/eigenvectors problem: 

        
    (6)   

where   is a diagonal matrix and   is such that       .   

- 4
th

 step: Calculation of 𝑃 : 

𝑃         /  (7)   

Then, (4) can be reduced by deleting the less influential states, leading to (2). The reduction 

order is the number of remaining states.  

This model will be called (R) for Reduced order model. A reduced order model of order 5 will 

be denoted R5. 

5. BENCHMARKING 

5.1 Computation time notation 

The reference time is obtained by the simulation time of D. As regards L and Rx models, the 

time spent to reduce the detailed model is taken into account. 

5.2 An a priori evaluation 

The “quality” of R can be evaluated by analyzing its state space representation without the aid 

of a simulation. Palomo ((Palomo, 2011), (Palomo, Bonnefous, & Déqué, 1997)) defines an 

index of the spectral quality called   ( ). For each output  , it gives the relative error 

(between L and R) according to input frequency  .  

To achieve this target, transfer function matrix of the linearized (resp. reduced order) model 

 ( ) (resp.  ̃( )) is calculated by : 

 ( )  𝐶(    𝐴)  𝐵   

 ̃( )  �̃�(    �̃�)
  
�̃�   

(8)   

Then,   ( ) is determined by:  
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  ( )   
∑ |   ( )   ̃  ( )|

    
   

∑ |   ( )|
    

   

 
(9)   

With: 

  : Number of inputs 

   ( ) (resp.  ̃  ( )) : Transfer function of  the  th output from the  th input. It belongs to the 

matrix  ( ) (resp.  ̃( )). 

Thus, the reduction order can be chosen by setting a risk tolerance threshold on the index. 

5.3 An evaluation by simulation 

Also, L and Rs have to be compared with the detailed model. A one year simulation is 

performed for each model and the results are studied. The gap between detailed model outputs 

and reduced model outputs, written  ( ), is called the reduction error.  

Statistical analysis 

A first statistical analysis of  ( ) by calculating the mean and the standard deviation will be 

made. Moreover, heating power and cooling power results will be integrated: 

- over one hour time steps to compare maximum peaks (ASHRAE standard indicator)  

- over a year to compare annual consumptions 

Spectral analysis 

Secondly, a spectral analysis of  ( ) will be performed. It is especially described for building 

thermal modeling in (Dautin, 1997) or (Ramdani et al., 1997). It aims at evaluating the 

dynamic behavior of reduced models in comparison with the detailed model.  

The power spectral density (PSD) of  ( ), noted    ( ) and calculated by (10), shows how 

the energy of the signal is distributed over the different frequencies. It must not be confused 

with the energy of the physical quantity.  

   ( )  | ̂( )|
  (10)   

where  ̂( ) is the Fourier transform of  ( ). 

The links between reduction error and model inputs are also investigated. Spectral coherence 

of  ( ) and an input signal  ( ) gives information about these. It is noted    
 ( ) and 

calculated by (11). It expresses the linear correlation between both signals according to the 

frequency. 

   
 ( )   

|   ( )|
 

   ( )   ( )
 (11)   

Where    ( ) is the cross spectral density (CSD) of both signals and is determined by :   

   ( )    ̂( ) ̂( )
  (12)   

Coherence allows comparing the influence of each input on reduction error of one reduced 

model. However, it is not a sufficient tool for comparing the influence of one input over two 

models. The partial coherence method (PCM) is an answer to this problem.   

PCM offers a decomposition of    ( ) such as:  
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   ( )  ∑  

 

   

( )   ( ) (13)   

 

With:  

  ( ) : Linear contribution of the     input to    ( )   

 ( ) : Unexplained part of    ( ) 

(Ramdani et al., 1997) provides equation (14).  Knowing the contribution of the     input 

requires to know the contribution of the (   )   input. The whole contribution computation 

is then an iterative process. The computation scheme, drawn on the Figure 3, is established in 

the case of a model with 3 inputs. 

 

  ( )     /      
 ( )   /      ( ) (14)   

With: 

   /      
 ( ) : Coherence between the     input and  ( ) after removing the linear 

contributions of the     input to the (   )   input. It is called partial coherence. 

   /      ( ) : PSD of  ( ) after removing the linear contributions of the     input to the 

(   )   input. 

 

 

 

 

 

 

 

 

 

 

In Figure 3, terms like    /    ( ) and partial coherence    /      
 ( ) are calculated by: 

   /    ( )  
   /      ( )   /      ( )     /      ( )   /      ( )

   /      ( )
 

   /      
 ( )  

|   /      ( )|  

   /      ( )   /      ( )
 

(15)   

This pattern is generally applicable with any number of inputs. In addition, it should be 

noticed that the order in which inputs are sorted affects the computed values of contributions. 

For instance, considering two inputs which are severely correlated with   ( ) (   
 ( )   and 

   
 ( )  ). If the contribution of input 1 is calculated at first, then   ( )     

 ( )    and 

Figure 3: Computation scheme of input’s contribution to     ( ) by PCM method in 

case of a 3 inputs model. 

   / ( ) 

   / ( ) 

   / ( ) 

 ̂( ),   ̂( ),   ̂( ) 

 

 ̂( ),   ̂( ),   ̂( ),   ̂( ),  

 

  ( ) 

   ( ) 
   ( ) 
   ( ) 
   ( ) 

   ( ) 
   ( ) 
   ( ) 

 

   / ( ) 

   / ( ) 

   / ( ) 

 ̂( ),   ̂( )   ( ) 

  ( ) 
   ( ) 
   ( ) 
   ( ) 

 

   /  ( ) 

   /  ( ) 

   /  ( ) 
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  ( ) 0. Now, if the contribution of input 2 is calculated at first, then   ( )     
 ( )    

and   ( ) 0. However, the unexplained portion stays the same regardless of the order of 

inputs. For the following parts, the order of inputs will be fixed for the comparison of models. 

Finally, results of the spectral analysis will be summed up by frequency bands. They are 

defined by the observation of the PSD of a signal. Here, (Figure 4), the signal is the error on 

the indoor temperature prediction of L. Four frequency bands are chosen: 

- VLF band: Very low frequency 

band (between 0 to (48h)
-1

). It 

describes quasi-static behaviour 

- LF band: low frequency band 

(between (48h)
-1

 to (16h)
-1

). It 

describes slow dynamic 

behaviour. 

- HF band: high frequency band 

(between (16h)
-1

 to (9h)
-1

). It 

describes medium dynamic 

behaviour. 

- VHF band: very high frequency 

band (superior to (9h)
-1

). It 

describes fast dynamic behaviour. 

 

The portion of the energy of the signal  ( ) contained in the frequency band 𝐵  is noted 

   ,  and is calculated by: 

   ,   
∫    ( )    

∑ ∫    ( )    

   
   

 (16)   

The part of the energy of the signal  ( ) explained by input  , contained in the frequency band 

𝐵 , is noted   ,   and is calculated by: 

The portion which cannot be explained by the inputs is called the unexplained part. A graphic 

representation of these quantities is available in section 6.2.3. 

6. RESULTS 

6.1 Hypotheses 

6.1.1 Test cases 

In this paper, ASHRAE test cases used are case600FF, case900FF, case600 and case900. 

They reflect a mono-zone building with two south-oriented windows (Figure 5). Simulations 

are conducted over a one year period with a fixed time step Δ   20s. 

  ,   
∫   ( )    

∫    ( )    

 (17)   

Figure 4: PSD signal example and frequency 

bands 

VLF LF 
HF 

VHF 
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The weather data come from the ASHRAE standard and match the weather in Denver, 

Colorado, USA. 

 

 
Figure 5: Building geometry of cases 

 

Table 1: Cases’ names 

 Low mass High inertia 

Free floating case600FF case900FF 

Regulation case600 case900 
 

According to the case, envelope inertia and indoor temperature control change (Table 1). In 

particular: 

- Free floating case: indoor temperature is not controlled 

- Regulation case: indoor temperature is regulated. The heating set-point is 20°C and 

the cooling set-point is 28°C. 

6.1.2 Choice of reduced model orders 

The spectral index, defined in subsection 5.2, is a useful tool to anticipate the quality of the 

results of Rs according to reduction order. It should be reminded that the spectral index is 

calculated by comparing L and Rs. Figure 6 and Figure 7 show indices estimated for case600 

and case900 with SSM block including 23inputs or 8inputs. On each chart, a gap of the index 

may be observed between order5 and order6. Then, R6 and L make very close predictions.  In 

the following parts, the results of R2, R4 and R6 will be exposed.   

  

Figure 6 : Spectral indices according to model input numbers - Case600 
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Figure 7: Spectral indices according to model input numbers – Case900 

6.2 Free floating cases 

6.2.1 Computation times 

Computation times are shown in Table 2. L with 23 inputs (resp. 8 inputs) roughly divides by 

two (resp. by three) the simulation time. In fact, for D, Matlab computes the outputs of each 

subcomponent at each time step: it considers the detailed model as a time variant system. In 

L’s case, time invariance property is ensured through the linearization stage. That’s why this 

computation is simplified and faster. 

Secondly, it can be noticed that 8-input models have shorter computation times than 23-input 

models. Indeed, the solar processor block has been linearized and has been “included” in the 

SSM block. Moreover, a SSM with 8 inputs is smaller than a SSM with 23 inputs. 

Table 2: Computation times - Free floating cases 

Case D L R2 R4 R6 

Case600FF/8inputs 
110,45s 

29,71s 28,29s 28,61s 30,45s 

Case600FF/23inputs 55,97s 53,90s 55,63s 60,33s 

Case900FF/8inputs 
108,41s 

28,65s 26,26s 27,06s 27,70s 

Case900FF/23inputs 55,59s 53,62s 55,03s 57,05s 

 

Finally, Rs have results very close to L. It seems to be a paradox because matrices of Rs are 

smaller than L’s ones. In fact, matrices of L are sparse (Figure 8) and Matlab optimizes the 

solving of SSM according to the number of null coefficient inside matrices. Then, even if 

sizes of L matrices are bigger, their sparsity must be taken into account to understand 

computation times. 
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Figure 8: Sparsity of matrices for L and R4 

6.2.2 Statistical analysis 

Differences between indoor temperature prediction of D with L and Rs have been calculated. 

Means and standard deviation of the reduction errors are shown in Table 3 and Table 4. 

As could be expected, L and R6 give very similar results. The mean of the difference between 

their results is close to 10
-11 

°C. 

Table 3: Mean of reduction error (°C) - Free floating cases 

Case L R2 R4 R6 

Case600FF/8inputs  -3.17e-02  -2.77e+00  -2.66e-02  -3.17e-02 

Case600FF/23inputs  -8.00e-06  -3.82e+00  -2.27e-03  -8.00e-06 

Case900FF/8inputs  -2.90e-02  -9.91e-01  -7.51e-01  -2.90e-02 

Case900FF/23inputs  -5.12e-06  1.31e+00  -4.24e-01  -5.12e-06 

Results of L with 8 and 23 inputs are close to D. However, R2s give results far from D. 

Models with 23 inputs give generally better results than model with 8 inputs. This probably 

stems from an exaggerated simplification of projected solar radiations made in the 8-input 

model.    

Table 4: Standard deviation of reduction error (°C) - Free floating cases 

Case L R2 R4 R6 

Case600FF/8inputs  5.09e-01  1.49e+00  5.09e-01 5.09-01 

Case600FF/23inputs  7.27e-03  2.22e+00  7.24e-03 7.27-03 

Case900FF/8inputs  3.60e-01  3.89e-01  3.34e-01 3.60-01 

Case900FF/23inputs  6.03e-04  5.33e-01  1.45e-01 6.03-04 

The same observations as before can be made about dispersion of reduction errors, in terms of 

difference between 8-input models and 23-input models, and the evolution of dispersion 

according to reduction order. 

6.2.3 Spectral analysis 

For each model, the decomposition of the reduction error was calculated thanks to (16) 

(energy of the residual in a frequency band) and (17) (energy explained by each specific input 

in a frequency band). The inputs are meteorological variables (outdoor temperature, sky 

temperature, diffuse and direct solar radiations). Table 5 (resp. Table 6) shows results for 
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case600FF (resp. case 900FF). In these graphs “Inex” denotes the energy unexplained by 

inputs. 

Less than 10% of the reduction error is not explained by the chosen inputs. Moreover, the 

reduction error is mainly connected with static and slow dynamic behaviors (more than 80% 

of the signal’s energy, i.e. the error). Then, climatic data are relevant to explain the error. 

 

Table 5: Decomposition of reduction error - Free floating, case600FF 

 Case600FF/8inputs Case600FF/23inputs 

L 

  

R2 

  

R4 

  

R6 

  

Concerning case600FF, the decomposition of reduction error of L with 8 inputs shows an 

important effect of meteorological inputs linked to radiative transfers (with regard to 

decomposition of the model with 23 inputs). The same observation can be made for R4 and 

R6. Here shows up the effect of the simplification of the solar processor for the 8 inputs 

model.  

The decomposition of R2 looks similar for both models. The effect of radiative transfer 

modeling is then pretty close and they produce equivalent dynamic behaviors.  

It can be noticed that the VLF part of the reduction error decreases with the reduction order 

being higher. 

   ,    

  ,    

  ,    



P001, Page 13 

 

9th International Conference on System Simulation in Buildings, Liege, December 10-12, 2014 

 

Concerning case900FF, reduction error is more connected with static behavior than in 

case600FF. That shows the effect of building inertia on the reduction error. 

Also, an important effect of inputs linked to radiative transfer on models with 8 inputs can be 

observed, which points towards the simplification made to the solar processing part. 

Table 6: Decomposition of reduction error - Free floating, case900FF 

 Case900FF/8inputs Case900FF/23inputs 

L 

  

R2 

  

R4 

  

R6 

  

6.3 Regulation cases 

6.3.1 Computation times 

Computation times of regulation cases are shown in Table 7. The same observations as the 

previous case can be made about time savings and reduction methods.  

Table 7: Computation times - Regulation cases 

Case D L R2 R4 R6 

Case600/8inputs 
138,67s 

55,85s 52,83s 53,88s 57,22s 

Case600/23inputs 83,78s 84,67s 85,37s 87,53s 

Case900/8inputs 
147,94s 

55,59s 53,62s 55,03s 57,12s 

Case900/23inputs 86,46s 83,83s 86,59s 88,06s 

6.3.2 Statistical analysis 

Differences between output predictions of D and L and Rs have been calculated. Mean and 

standard deviation of the reduction error on indoor temperature are shown in Table 8 and 

Table 9.  
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Two behaviors can be distinguished in the regulation case. The first one is the period when 

indoor temperature is controlled (heating or cooling period). The temperature is quasi 

constant. The second one is a free floating period. When the indoor temperature is between 

20°C and 28°C (the two set-points), indoor temperature is not controlled. In fact, periods 

when indoor temperature has a static behavior limit the value of reduction error. Then, the 

mean is often lower than free floating case. Mean reduction errors higher than in the free 

floating case are underlined in the following tables. 

 

Table 8: Mean of reduction error on indoor temperature (°C) – Regulation cases 

Case L R2 R4 R6 

Case600/8inputs  2.00e-02  -3.06e-01 2.07e-02  2.00e-02 

Case600/23inputs  2.75e-04  -4.58e-01 -2.04e-05  2.75e-04 

Case900/8inputs  -1.80e-02  -2.62e-01 -1.78e-01  -1.80e-02 

Case900/23inputs  4.89e-05  2.60e-01 -7.04e-02  4.89e-05 

 

About the standard deviation, the same observations can be made about models with 8 inputs. 

However, in this case, the reduction error of models with 23 inputs is more scattered than free 

floating case. 

Table 9: Standard deviation of reduction error on indoor temperature (°C) - Regulation cases 

Case L R2 R4 R6 

Case600/8inputs  1.51e-01  5.76e-01  1.56e-01  1.51e-01 

Case600/23inputs  4.38e-02  8.14e-01  6.20e-02  4.38e-02 

Case900/8inputs  1.42e-01  4.00e-01  2.45e-01  1.42e-01 

Case900/23inputs  2.69e-02  3.39e-01  1.13e-01  2.69e-02 

Finally, these statistical indicators show predictions of L and Rs are pretty close to those of D. 

For confirming this trend, annual consumptions and hourly peaks of heating and cooling 

system have calculated. Results are presented in Table 10 and Table 11. 

In the background of each chart, the banner represents the score interval of the set of tools 

presented in the ASHRAE standard. The dotted line is the mean result of the standard.  

R2, with 23 or 8 inputs, gives results outside the banner. It can be noticed for the cooling and 

the heating consumptions in Case600. However, all other models make coherent predictions 

with the standard. 

Finally, R4 seems to be a sufficient model to predict consumptions and hourly peaks close to 

those of D. In fact, a maximum deviation of 3.2% can be found between R4 and D results. It 

concerns cooling peak of a model with 8 inputs. 
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Table 10 : Consumptions and hourly peaks - Case600 
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Table 11 : Consumptions and hourly peaks results – Case900 

 

6.3.3 Spectral analysis 

The decomposition of indoor temperature reduction error has been calculated for each model. 

It is shown in Table 12 for case600 and in Table 13 for case900. The effect of heating 

convective power has been added to the analysis. 

In case600, reduction error of L, R4 and R6 is mainly in the very high frequency band: this 

could be expected considering that the VHF band spans frequencies higher than (9h). 

Decompositions are close between the model with 8 inputs and the model with 23 inputs but 

the simplification on the solar processor in the 8-input model creates low frequency error. The 
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unexplained part is quite important (more than 10% here). It can be noticed all the inputs have 

the same contribution on the reduction error (around 16%). 

In case900, a higher order model (R6) is necessary to get rid of the reduction errors showing 

up in the VLF, LF and HF frequency bands. The errors on solar heat gain implied by the 

simplification of the solar processor have much more impact than in the lighter case600. 

In the following graphs, Pcl denotes the convective power input.  

 

Table 12 : Decomposition of indoor temperature reduction error - Regulation, case600 

 Case600/8inputs Case600/23inputs 

L 

  

R2 

  

R4 

  

R6 
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Table 13: Decomposition of indoor temperature reduction error - Regulation, case900 

 Case900/8inputs Case900/23inputs 

L 

  

R2 

  

R4 

  

R6 

  

7. A VARIANT OF BALANCED TRUNCATION 

7.1 Description 

With a sufficient order, balanced truncation gave results close to L. However, computation 

time does not decrease because, contrary to L, matrices of reduced order models are not 

sparse and the number of inputs is large. Recent methods such as SVDMOR and RecMOR 

(Feldmann & Liu, 2004) or TermMerg  (Liu, Tan, & McGaughy, 2007) are able to reduce 

model with a large number of inputs. In this paper, the ESVDMOR method will be used, a 

generalised version of SVDMOR, which was introduced by Liu & Tan (Liu, Tan, Yan, & 

McGaughy, 2008). 

There are two steps to perform this method. First, the number of terminals is reduced by 

finding some correlations between the terminals thanks to Singular Value Decomposition 

(SVD). Secondly, the order of the SSM is reduced with a common method of Model Order 

Reduction. In this paper, the balanced truncation will be used. Table 14 summarizes these 

steps. Plain black rectangles symbolise dense matrices and hatched rectangles denote sparse 

matrices. 
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Table 14: ESVDMOR process 

 ESVDMOR with balanced truncation 

Initial state space representation 

 

Step1: Decomposition of controlability 

and observability matrices with a SVD of 

output moment responses matrices. It 

leads to the identification of a state space 

model with a lower number of terminal. 

 

Step2: Reduction of the order of the 

identified state space with balanced 

truncation method.  

In the current case study, there is only one output. ESVDMOR will then just reduce the 

number of inputs. It will be performed on the SSM with 23 inputs. 

7.2 Choice of the number of inputs 

Liu & Tan suggest choosing the number of inputs in order to preserve significant singular 

value computed in step 1. However, this method was not adapted to the  problem at hand. 

Indeed, with this criterion, only one input was preserved and the predictions of the reduced 

model were imprecise. So, in order to determine the number of inputs, the spectral index 

previously defined (Figure 9) will be used. In this figure, the balanced truncation is performed 

at the order 6.When the 23 inputs are preserved, the spectral index is the same as Figure 6 

(case600) and Figure 7 (case900). Spectral index is quickly downgraded when the number of 

inputs decreases. However, it is still satisfying. To confirm that, in the following part, the 

results of ESVDMOR will be compared to those of simple balanced truncation.   

  
Figure 9: Spectral indices according to the number of inputs – ESVDMOR 
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7.3 Results 

The main results of simulation with ESVDMOR are shown in Table 15. The model with 5 

inputs gives results with the best compromise between computation time and results quality. 

However, the saving is not significant (less than 0,2s on around 50s). In fact, the step which 

allows computing    from U and   from  ′is added in this method. So, the gain obtained 

thanks to the reduced number of inputs is compensated by this additional step. 

Table 15: Results of ESVDMOR - Free floating cases 

Method 
Computation 

time 

Case600FF  ( ) 
mean/st. dev. (°C) 

Case900FF  ( ) 
mean/st. dev. (°C) 

Moore 54,33s  -8.00e-06/7.27e-03   -5.12e-06/6.03e-04  

ESVDMOR (1input) 51,53s  1.43e-01/8.04e-01   1.67e-01/7.80e-01  

ESVDMOR (5inputs) 54,13s  -1.57e-01/4.97e-02   3.18e-01/3.30e-01  

ESVDMOR (10inputs) 55,15s  -1.18e-01/3.21e-02   4.23e-01/3.37e-01  

ESVDMOR (15inputs) 56,45s 7.33e-02/9.49e-02  4.36e-01/5.78e-01  

8. CONCLUSION 

In this study, two methods to reduce the order of a detailed building model were used. The 

first was the balanced truncation. If the order is sufficient, the reduced order model will make 

predictions close to the detailed model. Two indicators were used to qualify the models. The 

spectral index gives an a priori evaluation of the adequate reduction order. The spectral 

analysis of the residual between the results of detailed and reduced models gives a good 

qualitative insight of the contribution of inputs on the residual and is as such an indication of 

the submodels responsible for the gaps between model results. It should, though, be used with 

caution when it comes to quantitative evaluations, since the order in which inputs are 

considered matters. The time saving of model order reduction is not significant on the test 

cases used, compared to the time saving obtained by the extraction of a time-invariant state-

space model. The sparsity of the matrix corresponding to the linearized detailed model, and 

the large number of inputs of the linearized system, explain this low time saving. 

Then, a second method called ESVDMOR was tested. It permits to create a state space model 

with a lower number of inputs and perform balanced truncation on it. However, an additional 

step is required. It has to be taken into account because it is computed at each time step. The 

results are quickly downgraded according to the number of inputs but still acceptable. 

Nevertheless, this method does not allow saving much time. 
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